Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T13:19:33.381Z Has data issue: false hasContentIssue false

Impact of Hydrogen Plasma Treatment on Gettering by He Implantation-Induced Cavities in Silicon

Published online by Cambridge University Press:  17 March 2011

D. Alquier
Affiliation:
LMP, 16 rue Pierre et Marie Curie, BP 7155, F37071 Tours CEDEX, France
E. Ntsoenzok
Affiliation:
CERI-CNRS, 3A rue de la Férollerie, 45071 Orléans CEDEX, France
C.L. Liu
Affiliation:
LMP, 16 rue Pierre et Marie Curie, BP 7155, F37071 Tours CEDEX, France CERI-CNRS, 3A rue de la Férollerie, 45071 Orléans CEDEX, France
A. Vengurlekar
Affiliation:
Department of Engineering Science and Mechanics, the Pennsylvania State University, 212 Earth and Engineering Science Building, University Park, PA 16802, USA
S. Ashok
Affiliation:
Department of Engineering Science and Mechanics, the Pennsylvania State University, 212 Earth and Engineering Science Building, University Park, PA 16802, USA
Get access

Abstract

The use of gettering techniques, with precise location of the gettering regions, has become crucial for device manufacturing. Helium-induced cavities have been shown to getter metallic impurities very effectively, but suffer from the drawback of requiring relatively high He doses. In this work, He-implanted Cz wafers of varying resistivity were subjected to hydrogen plasma hydrogenation prior to the cavity-formation anneal. We focus our studies on the cavity layer interactions with metal impurities. XTEM images reveal that hydrogenation increases the cavity radius. Our SIMS results show that the doping level has no influence on the metal gettering efficiency while the addition of plasma hydrogenation tends to decrease it. However, the efficiency can be controlled with the cavity radius which is interesting for future applications of the technique.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pearton, S.J., Corbert, J.W. and Starola, M., Hydrogen in crystalline semiconductors (Springer-Verlag, Heidelberg, 1992)Google Scholar
2. Sveinjornsson, E.O., Anderson, G.I. and Engstrom, O., Phys. Rev. B49 (1994) p7801.Google Scholar
3. Myers, S.M., Follstaedt, D.M., J. Appl. Phys. 79 (1996) 1337.Google Scholar
4. Raineri, V., Saggio, M., Rimini, E., J. Mater. Res., Vol. 15, No 7 (2000) 1449.Google Scholar
5. Cayrel, F., Alquier, D., Ventura, L., Vincent, L., Roqueta, F., Dubois, C., Jerisian, R., GADEST 2003, Zeuthen, Germany, Sept. 21-26 2003 (invited paper), Solid State Phen. Vol. 95–96 (2004) p 297 Google Scholar
6. Donnelly, S. E., Vishnyakov, V. M., Bitcher, R. C. and Carter, G., Nucl. Instru. Meths. B175–177 (2001) p132.Google Scholar
7. Raineri, V. and Campisano, S. U., Appl. Phys. Lett. Vol. 69 (1996) p1783.Google Scholar
8. Liu, Changlong, Ntsoenzok, E., Delamare, R., Alquier, D., and Regula, G., Vincent, L., Filadelfo, C. and Claverie, A., Mat. Sci. & Eng. B, (2003), in press.Google Scholar
9. Liu, C.L., Ntsoenzok, E., Barthe, M. F., Desgardin, P., Ashok, S., Vengurlekar, A., Alquier, D., Ruault, M.-O., Solid State Phenomena, Vol. 95–96, 307312 (2003).Google Scholar
10. Schut, H., Veen, A. Van, Eijt, S. W. H., Job, R., Ulyashin, A. G., Fahrner, W. R., Nucl. Instru. Meths. B 186 (2002) p94.Google Scholar
11. Ulyashin, A. G., Job, R., Fahrner, W. R., Grambole, D., Herrmann, F., Diffusion and Defects Data Pt. B: Solid State Phenomena, 82–84, (2002) p315.Google Scholar
12. Alquier, D., Roqueta, F., Ventura, L., Cayrel, F., Dubois, C. and Jérisian, R., Jap. J. Appl. Phys. Vol (41) pp 36253628 Part 1 No 6A June 2002 Google Scholar
13. Cayrel, F., Vincent, L., Alquier, D., Cristiano, F., Ventura, L., Dubois, C. and Claverie, A., GADEST 2003, Zeuthen, Germany, Sept. 21-26 2003, Solid State Phen. Vol. 95–96 (2004) p 325 Google Scholar
14. Peeva, A., Fitchner, P.F.P, Behar, M., Kogler, R., Skorupa, W., Nucl. Instru. Meths. B 175–177 (2001) p 176 Google Scholar
15. Stritzker, B., Petravic, M., Wong-Leung, J. and Williams, J.S., Appl. Phys. Lett. Vol. 78 (18) (2001) p.2682 Google Scholar
16. Schiettekatte, F., Wintgens, C. and Roorda, S., Appl. Phys. Lett. Vol. 74 (13) (1999) p.1857 Google Scholar