Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T13:33:00.093Z Has data issue: false hasContentIssue false

The Identification of the Metallic Glass State

Published online by Cambridge University Press:  26 February 2011

Frans Spaepen*
Affiliation:
Division of Applied Sciences Harvard University Cambridge, MA 02138
Get access

Abstract

David Turnbull has been the most prominent figure in the identification of the metallic glass state. This paper reviews his many contributions: the free volume model for transport in simple liquids, the demonstration of a substantial crystal nucleation barrier in liquid metals, the prediction of the universality of the glass transition, the formulation of criteria for glass formation, the first demonstration of the characteristic glass transition phenomena in a metallic glass, and important contributions to the study of the structure and physical properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, G. and Gibbs, J. H. (1965). J. Chem. Phys. 43, 139.Google Scholar
Argon., A. S. (1979). Acta Met. 27, 47.CrossRefGoogle Scholar
Ashby, M. F., Nelson, A. N., and Centamore, R. M. A. (1970). Scripta Met. 4, 715.Google Scholar
Bagley, B. G. and Turnbull, D. (1965). Bull. Am. Phys. Soc. 10, 1101.Google Scholar
Bagley, B. G. and Turnbull, D. (1970). Acta Met. 18, 857.Google Scholar
Bendersky, L. A. and Ridder, S. D. (1986). J. Mat. Res. 1, 405.Google Scholar
Bennett, C. H. (1972). J. Appl. Phys. 43, 2727.Google Scholar
Bernal, J. D. (1959). Nature 183, 141.Google Scholar
Bernal, J. D. (1960). Nature 185, 68.Google Scholar
Brenner, A., Couch, D. D., and Williams, E. K. (1950). J. Res. Nat. Bur. Stds. 44, 109.CrossRefGoogle Scholar
Bückel, W. and Hilsch, R. (1954). Z. Phys. 138, 109.CrossRefGoogle Scholar
Cargil, G. S. (1970). J. Appl. Phys. 41, 12.Google Scholar
Cech, R. E. and Turnbull, D. (1951). J. Metals 191, 242.Google Scholar
Chason, E., Greer, A. L., Kelton, K. F., Pershan, P. S., Sorenson, L. B., Spaepen, F., and Weiss, A. H. (1985). Phys. Rev. B 32, 3399.Google Scholar
Chen, H. S. (1978). J. Appl. Phys. 49, 3289.CrossRefGoogle Scholar
Chen, H. S., and Goldstein, M. (1972). J. Appl. Phys. 43, 1642.CrossRefGoogle Scholar
Chen, H. S. and Turnbull, D. (1968). J. Chem. Phys. 48, 2560.Google Scholar
Chen, H. S., Krause, J. T., and Sigety, E. A. (1973). J. Non- Crystalline Solids 13, 321.Google Scholar
Chou, C. P., and Turnbull, D. (1975). J. Non-Crystalline Solids 17, 168.Google Scholar
Cohen, M. H., and Grest, G. S. (1979). Phys. Rev. B 20, 1077.Google Scholar
Cohen, M. H. and Turnbull, D. (1959). J. Chem. Phys. 31, 1164.Google Scholar
Cohen, M. H., and Turnbull, D. (1961). Nature 189, 131.Google Scholar
Cohen, M. H., and Turnbull, D. (1964). Nature 203, 964.Google Scholar
Davies, H. A. (1983). In “Amorphous Metallic Alloys,” edited by Luborsky, F. E., Butterworths, London, p. 14.Google Scholar
DeLau, J. G. M. (1970). J. Appl. Phys. 41, 5355.Google Scholar
Doolittle, A. K. (1951). J. Appl. Phys. 22, 1471.CrossRefGoogle Scholar
Drehman, A. J., Greer, A. L., and Turnbull, D. (1982). Appl. Phys. Lett. 41, 716.Google Scholar
Elser, V. (1984). J. Phys. A 17, 1509.Google Scholar
Finney, J. L. (1970). Proc. Roy. Soc. 319A, 497.Google Scholar
Frank, F. C. (1952).Proc. Roy. Soc. 251A, 43.Google Scholar
Frank, F. C., and Turnbull, D. (1956). Phys. Rev. 104, 617.CrossRefGoogle Scholar
Fulcher, G. S. (1925). J. Am. Ceram. Soc. 6, 339.Google Scholar
Gibbs, J. H., and DiMarzio, E. A. (1958). J. Chem. Phys. 28, 373.Google Scholar
Greer, A. L. (1982). Acta Met. 30, 171.Google Scholar
Hilsch, R. (1960). In “Non-Crystalline Solids,” edited by Frechette, V. C., Wiley, NY p. 348.Google Scholar
Kauzmann, W. (1948). Chem. Rev. 43, 219.Google Scholar
Kelton, K. F., and Spaepen, F. (1984). Phys. Rev. B 30, 5516.CrossRefGoogle Scholar
Klement, W., Willens, R. H., and Duwez, P. (1960). Nature 187, 869.CrossRefGoogle Scholar
Kui, H. W., Greer, A. L., and Turnbull, D. (1984). Appl. Phys. Lett. 45, 615.CrossRefGoogle Scholar
LeClaire, A. D. (1978). J. Nucl. Mat. 69/70 70.Google Scholar
Lillie, H. R. (1933). J. Am. Cer. Soc. 16, 619.Google Scholar
Lin, C. J., Spaepen, F., and Turnbull, D. (1984). J. Non-Cryst. Solids 61/62, 767.Google Scholar
Pauling, L. (1935). J. Am. Chem. Soc. 57, 2680.Google Scholar
Perepezko, J. H. (1980). “Proc. 2nd Int. Conf. on Rapid Solidification Processing,” Reston, VA, edited by Mehrabian, R., Kear, B. H., and Cohen, M., Claitor's, Baton Rouge, LA, p. 56.Google Scholar
Polk, D. E. (1970). Scripta Met. 4, 117.Google Scholar
Polk, D. E. (1972). Acta Met. 20, 485.Google Scholar
Ramachandrarao, P., Cantor, B., and Cahn, R. W. (1977). J. Non- Cryst. Solids 24, 109.Google Scholar
Ramachandrarao, P., Cantor, B., and Cahn, R. W. (1977a). J. Mat. Sci. 12, 2488.Google Scholar
Roberts, G. J., and Roberts, J. P. (1965). “Proc. 7th Int. Conf. on Glass,” p. 31.Google Scholar
Rosenblum, M. P., Spaepen, F., and Turnbul, D. (1980). App. Phys. Lett. 37, 184.Google Scholar
Schwarz, R. B., and Johnson, W. L. (1983). Phys. Rev. Lett. 51, 415.CrossRefGoogle Scholar
Spaepen, F. (1975). Acta Met. 23, 729.CrossRefGoogle Scholar
Spaepen, F. (1977). Acta Met. 25, 407.Google Scholar
Spaepen, F. (1986). In “Laser Surface Treatments of Metals,” edited by Draper, C. W. and Mazzoldi, P., NATO-ASI Proceedings, Martinus Nijhoff, Dordrecht, The Netherlands, p. 79.Google Scholar
Spaepen, F. and Lin, C. J. (1984). In “Amorphous Metals and Non-Equilibrium Processing,” edited by Allmen, M. von, Les Editions de Physique, Les Ulis, France, p. 65.Google Scholar
Spaepen, F., and Meyer, R. B. (1976). Scripta Met. 10, 257.Google Scholar
Spaepen, F., Tsao, S. S., and Wu, T. W. (1986). In “Amorphous Metals and Semiconductors,” edited by Jaffee, R. I. and Haasen, P., Acta-Scripta Met. Proc. Series 3, Pergamon, NY, p. 365.Google Scholar
Spaepen, F., and Turnbull, D. (1976). “Proc. 2nd Int, Conf. on Rapidly Quenched Metals,” edited by Grant, N. J. and Giessen, B. C., MIT Press, Cambridge, MA, p. 205.Google Scholar
Spaepen, F., and Turnbull, D. (1984). Ann. Rev. Phys. Chem. 35, 241.Google Scholar
Spaepen, F., and Turnbull, D. (1982). In “Laser Annealing of Semiconductors,” edited by Poate, J. M. and Mayer, J. W., Academic, NY, p. 15.Google Scholar
Steif, P. S., Spaepen, F., and Hutchinson, J. W. (1982). Acta Met. 30, 447.Google Scholar
Taub, A. I., and Spaepen, F. (1980). Acta Met. 28, 1781.Google Scholar
Thompson, C. V., and Spaepen, F. (1983). Acta Met. 31, 202.Google Scholar
Tsao, S. S., and Spaepen, F. (1985). Acta Met. 33, 881.Google Scholar
Turnbull, D. (1952). J. Chem. Phys. 20, 411.Google Scholar
Turnbull, D. (1964). In, ”Physics of Non-Crystalline Solids” edited by Prins, J. A., North-Holland, Amsterdam, p. 41.Google Scholar
Turnbull, D. (1969). Contemp. Phys. 10, 473.Google Scholar
Turnbull, D. (1974). J. de Physique 35, C4, 1.Google Scholar
Turnbull, D. (1981). Met. Trans. 12A, 695.Google Scholar
Turnbull, D. (1981a). Prog. Mat. Sci., Chalmers Anniversary Volume, 269.Google Scholar
Turnbull, D. (1986). In “Amorphous Metals and Semiconductors,” edited by Jaffee, R. I. and Haasen, P., Acta-Scripta Met. Proc. Series 3, Pergamon, NY, p. 9.Google Scholar
Turnbull, D. (1986a). Japan Prize Lecture.Google Scholar
Turnbull, D., and Cohen, M. H. (1958). J. Chem. Phys. 29, 1049.CrossRefGoogle Scholar
Turnbull, D., and Cohen, M. H. (1961). J. Chem. Phys. 34, 120.CrossRefGoogle Scholar
Turnbull, D., and Cohen, M. H. (1970). J. Chem. Phys. 52, 3038.Google Scholar
van den Beukel, A., and Radelaar, S. (1983). Acta Met. 31, 419.CrossRefGoogle Scholar
Vogel, H. (19821). Z. Phys. 22, 645.Google Scholar
Warburton, W. K., and Turnbull, D. (1975). In “Diffusion in Solids, Recent Developments,” Academic, NY, p. 171.Google Scholar
Weaire, D. Ashby, M. F., Logan, J., and Weins, M. J. (1971). Acta Met. 19, 779.Google Scholar
Williams, M. F., Landel, R. F., and Ferry, J. D. (1955). J. Am. Chem. Soc. 77, 3701.Google Scholar
Wu, T. W. (1985). Ph.D. Thesis, Harvard University.Google Scholar
Zachariasen, W. H. (1932). J. Am. Chem. Soc. 54, 3841.Google Scholar