Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T13:31:55.870Z Has data issue: false hasContentIssue false

Identification of An Interstitial Carbon – Interstitial oxygen Complex in Silicon

Published online by Cambridge University Press:  26 February 2011

J. M. Trombetta
Affiliation:
Department of Physics, Lehigh University Bethlehem, PA 18015, USA
G. D. Watkins
Affiliation:
Department of Physics, Lehigh University Bethlehem, PA 18015, USA
Get access

Abstract

The Si-G15 EPR spectrum and the 0.79eV “C-line” luminescence spectra in silicon are shown to arise from an interstitial carbon - interstitial oxygen complex. The g-tensor and 13C hyperfine interaction tensor indicate the structure in the vicinity of the carbon atom while stress alignment studies reveal the configuration near the oxygen atom. The pairing of the two impurities leads to a lattice relaxation which serves to stabilize the complex against dissociation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Refrences

1.Watkins, G. D., in Radiation Damage in Semiconductors, edited by Baruch, P. (Dunod, Paris, 1965), p. 97.Google Scholar
2.Almeleh, N. and Goldstein, B., Phys. Rev. 149, 687 (1966).Google Scholar
3.Yukhnevich, A. V., Tkachev, V. D., and Bortnik, M. V., Sov. Phys. Sol. St. 8, 1004 (1966).Google Scholar
4.Mooney, P. M., Cheng, L. J., Suli, M., Gerson, J. D., and Corbett, J. W., Phys. Rev. B 15, 3836 (1977).Google Scholar
5.Foy, C. P., J. Phys. C 15, 2059 (1982).Google Scholar
6.Jones, C. E., Johnson, E. S., Compton, W. D., Noonan, J. R. and Streetman, B. G., J. App. Phys. 44, 5402 (1973).Google Scholar
7.Thonke, K., Watkins, O. D. and Sauer, R., Sol. St. Com. 51, 127 (1984).Google Scholar
8.Davies, G., Oates, A. S., Newman, R. C., Wooley, R., Lightowlers, E. C., Binns, M. J. and Wilkes, J. G., J. Phys. C 19, 841 (1986).Google Scholar
9.Thonke, K., Hangleiter, A., Wagner, J. and Sauer, R., J. Phys. C 18, L795 (1986).Google Scholar
10.Wagner, J., Thonke, K. and Sauer, R., Phys. Rev. B 29, 7051 (1984).Google Scholar
11.Yukhnevich, A. V., Tkachev, V. D., and Bortnick, M. V., Fiz. Tverd. Tela 8, 3213 (1966) [Sov. Phys. Sol. St. 8, 2571 (1967)].Google Scholar
12.Davies, G., Lightowlers, E. C., Wooley, R., Newman, R. C., and Oates, A. S., J. Phys. C 17, L499 (1984).Google Scholar
13.Newman, R. C., Infrared Studies of Crystal Defects, (Taylor and Francis Ltd., London, 1973), p. 128.Google Scholar
14.Goldstein, B., Wysocki, J. J., Almeleh, N., and Rappaport, P., C. F. S. T. I., N67-28927, as reported in Johnson, E. S. and Compton, W. D., Rad. Eff. 9, 89 (1971).Google Scholar
15.Lee, Y. H., Corbett, J. W. and Brower, K. L., Phys. Stat. Sol. 41, 673 (1977).Google Scholar
16.Trombetta, J. M. and Watkins, G. D., Appl. Phys. Lett. 51, 1103 (1987)Google Scholar
17.Kaplyanskii, A. A., Opt. Spec. 16, 329 (1964).Google Scholar
18.Watkins, G. D. and Brower, K. L., Phys. Rev. Let. 36, 1329 (1976).Google Scholar
19.Corbett, J. W., McDonald, R. S. and Watkins, G. D., J. Phys. Chem. Sol. 25, 873 (1964).Google Scholar
20.Bosomworth, D. R., Hayes, W., Spray, A. R. L., and Watkins, G. D., Proc. Roy. Soc. Lond. A. 317, 133 (1970)Google Scholar
21.DeLeo, G. G., Fowler, W. B., and Watkins, G. D., Phys. Rev. B 29, 3193 (1984)Google Scholar
22.Besson, M., DeLeo, G. G., and Fowler, W. B., Bull. Amer. Phys. Soc. 32, 404 (1987)Google Scholar
23.Svensson, B. G. and Lindstrom, J. L., Phys. Stat. Sol.(a) 95, 537 (1986)Google Scholar