No CrossRef data available.
Published online by Cambridge University Press: 16 March 2015
The compression and decompression behaviors of graphite oxide have been investigated using in situ Raman measurements in a diamond-anvil cell at room temperature. The so-called G band (in-plane E2g mode ∼1600 cm-1) was followed to 49 GPa during compression and back to ambient under decompression. The Raman frequency of the G band increases sublinearly with increasing hydrostatic pressure, eventually nearly flattening out at the highest pressure measured. This trend is reversed upon decompression, fully recovering to the ambient spectrum. The increased broadening suggests a reversible disordering of the structure without significant sp2-sp3 rehybridization under pressure.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.