Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T01:35:22.078Z Has data issue: false hasContentIssue false

Hydrostatic Compression of Graphite Oxide to 49 GPa: A Raman Spectroscopic Study

Published online by Cambridge University Press:  16 March 2015

Varghese Swamy
Affiliation:
School of Engineering, Monash University Malaysia, Bandar Sunway, Malaysia
Jong Boon Ooi
Affiliation:
School of Engineering, Monash University Malaysia, Bandar Sunway, Malaysia
Alexander Kurnosov
Affiliation:
Bayerisches Geoinstitut, University of Bayreuth, Bavaria, Germany
Leonid S. Dubrovinsky
Affiliation:
Bayerisches Geoinstitut, University of Bayreuth, Bavaria, Germany
Alexei Y. Kuznetsov
Affiliation:
INMETRO, DIMAT, Rio de Janeiro, Brazil
Ahmad Fauzi M. Noor
Affiliation:
School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Penang, Malaysia
Get access

Abstract

The compression and decompression behaviors of graphite oxide have been investigated using in situ Raman measurements in a diamond-anvil cell at room temperature. The so-called G band (in-plane E2g mode ∼1600 cm-1) was followed to 49 GPa during compression and back to ambient under decompression. The Raman frequency of the G band increases sublinearly with increasing hydrostatic pressure, eventually nearly flattening out at the highest pressure measured. This trend is reversed upon decompression, fully recovering to the ambient spectrum. The increased broadening suggests a reversible disordering of the structure without significant sp2-sp3 rehybridization under pressure.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bianco, A. et al. ., Carbon 65, 1 (2013).CrossRefGoogle Scholar
Talyzin, A. V. et al. ., Angew. Chem. Int. Ed. 47, 8268 (2008).CrossRefGoogle Scholar
Proctor, J. E. et al. ., Phys. Rev. B 80, 073408 (2009).CrossRefGoogle Scholar
Huang, M. Y. et al. ., Proc. Natl. Acad. Sci. U.S.A. 106 (2009).Google Scholar
Tsoukleri, G. et al. ., Small 5, 2397 (2009).CrossRefGoogle Scholar
Frank, O. et al. ., ACS Nano 4, 3131 (2010).CrossRefGoogle Scholar
Nicolle, J. et al. ., Nano Lett. 11, 3564 (2011).CrossRefGoogle Scholar
del Corro, E, et al. ., Carbon 49, 973 (2011).CrossRefGoogle Scholar
Clark, S. M. et al. ., Solid State Commun. 154, 15 (2013).CrossRefGoogle Scholar
Lu, S. et al. ., Chem. Phys. Lett. 585, 101 (2013).CrossRefGoogle Scholar
Xu, L. and Cheng, L., J. Nanomater. 2013, 15.Google Scholar
Pandey, K. K. et al. ., Carbon 70, 199 (2014).CrossRefGoogle Scholar
Filintoglou, K. et al. ., Phys. Rev. B 88, 045418 (2013).CrossRefGoogle Scholar
Talyzin, A. V. and Luzan, S. M., J. Phys. Chem. C 114, 7004 (2010).CrossRefGoogle Scholar
Talyzin, A. V. et al. ., J. Phys. Chem. Lett. 2, 309 (2011).CrossRefGoogle Scholar
You, S. et al. ., ACS Nano 7, 1395 (2013).CrossRefGoogle Scholar
Hummers, W. S. Jr. and Offeman, R. E., J. Amer. Chem. Soc. 80, 1339 (1958).CrossRefGoogle Scholar
Perera, S. D. et al. ., ACS Catal. 2, 949 (2012).CrossRefGoogle Scholar
Wang, Y. et al. ., Sci. Rep. 2: 520 (2012).CrossRefGoogle Scholar
Boulfelfel, S. E., Oganov, A. R. and Leoni, S., Sci. Rep. 2, 471 (2012).CrossRefGoogle Scholar