Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T04:01:51.682Z Has data issue: false hasContentIssue false

Hydrogenation and Dehydrogenation Properties of Mg-Cu, Mg-Al Eutectic Alloy

Published online by Cambridge University Press:  31 January 2011

Ho Shin
Affiliation:
marine894rl@hotmail.com, Faculty of chemistry, Materials and Bioengineering, Kansai University, Osaka, Japan
Yuma Eto
Affiliation:
impact-flash.1140-3891@softbank.ne.jp, Faculty of chemistry, Materials and Bioengineering, Kansai University, Osaka, Japan
Hiroyuki T. Takeshita
Affiliation:
t020035@kansai-u.ac.jp, Faculty of chemistry, Materials and Bioengineering, Kansai University, Osaka, Japan
Koji Tanaka
Affiliation:
koji.tanaka@aist.go.jp, AIST, IKEDA, Japan
Get access

Abstract

Mg has 7.6 mass% of high gravimetric hydrogen density, an abundance of resources and inexpensive price compared with other functional materials. Owing to these merits, it has been the major subject of hydrogen storage study. However, it is unsuitable for practical application due to thermodynamic stability and slow kinetics of Mg hydride. Therefore, many ways such as fabrication of nanocrystalline or addition of catalyst have been proposed to solve the problems of Mg hydride system. Copper and aluminum are inexpensive and can obtain easily as well as Mg. Each eutectic alloy could be produced by sintering process and observed improvement of reaction with hydrogen. Mg2Cu laminate, one phase of Mg-Cu eutectic alloy, could also be produced by cold-rolling process, and it showed reversible reaction with hydrogen, at this study.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Guo, Z.X. Shang, C. Aguey-Zinsou, K.F., J. Eur. Ceram. Soc., 28(2008), 14671473 Google Scholar
[2] Andreasen, Anders, Int. J. Hydrogen Energy, 33(2008), 74897497 Google Scholar
[3] Zeng, K. Klassen, T. Oelerich, W. Bormann, R. Int. J. Hydrogen Energy, 24(1999), 9891004 Google Scholar
[4] Dornheim, M. Doppiu, S. Barkhordarian, G. Boesenbeerg, U. Klassen, T. Gutfleisch, O. and Bormann, R. Scripta Mater., 56(2007), 841846 Google Scholar
[5] Jain, I.P. Lal, Chhagan, Jain, Ankur, Int. J. Hydrogen Energy, xxx (2009), 112 Google Scholar
[6] Reilly, J.J. Wiswall, R.H. Inorg. Chem., 7(1968), 22542256 Google Scholar
[7] Ikeda, Y. Ohmori, T. Int. J. Hydrogen Energy, 34(2009), 54395443 Google Scholar
[8] Hsu, C.W. Lee, S.L. Jeng, R.R. Lin, J.C. Int. J. Hydrogen Energy, 32(2007), 49074911 Google Scholar
[9] Saita, I. Li, L. Saito, K. Akiyama, T. J. Alloys Comp., 356-357(2003), 490493 Google Scholar
[10] Crivello, J.C. Nobuki, T. Kato, S. Abe, M. Kuji, T. J. Alloys Comp., 446-447(2007), 157161 Google Scholar
[11] Reilly, J.J. Wiswall, R.H. Inorg. Chem., 6(1967), 22202223 Google Scholar
[12] Nishimura, C. Komaki, M. Amano, M. J. Alloys Comp., 293-295(1999), 329333 Google Scholar
[13] Thaddeus. Massalski, B. Okamoto, H. Subramanian, P.R. Linda Kacprzak, Binary alloy phase diagrams, vol. 1, ASM international(1990), 169171 Google Scholar
[14] Massalski, Thaddeus. B. Okamoto, H. Subramanian, P.R. Kacprzak, Linda, Binary alloy phase diagrams, vol. 2, ASM international(1990), 14331435 Google Scholar
[15] Zhang, L. Cao, Z.Y. Liu, Y.B. Su, G.H. Cheng, L.R. Mater. Sci. Eng. A, 508(2009), 129133 Google Scholar
[16] Wong, W.L.E. Gupta, M. Comp. Sci. Tech., 67(2007), 15411552 Google Scholar
[17] Takeichi, N. Tanaka, K. Tanaka, H. Ueda, T.T. Kamiya, Y. Tsukahara, M. Miyamura, H. Kikuchi, S. J. Alloys Comp., 446-447(2007), 543548 Google Scholar
[18] Yoshimura, S. Narisawa, Y. Watanabe, Y. tsunoda, M. Takahashi, M. J. Magn. Magn. Mater., 312(2007), 176180 Google Scholar
[19] Dantzer, P. Mater. Sci. Eng. A, 329-331(2002), 313320 Google Scholar
[20] Zang, Q.A. Wu, H.Y. Mater. Chem. Phys. 94(2005), 6972 Google Scholar