Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T23:30:00.267Z Has data issue: false hasContentIssue false

Hydrogen Evolution and Interface Reaction of Cu Thin Film on a-Si:H

Published online by Cambridge University Press:  21 February 2011

L. Bemardino
Affiliation:
Programa de Metalurgia e Materiais, COPPE, Universidade Federal do Rio de Janeiro Caixa Postal 68505, Rio de Janeiro, Brasil
Carlos Achete
Affiliation:
Programa de Metalurgia e Materiais, COPPE, Universidade Federal do Rio de Janeiro Caixa Postal 68505, Rio de Janeiro, Brasil
F. L. Freire Jr
Affiliation:
PUC-Rio, Brasil
Get access

Abstract

The Cu/a-Si:H system has been studied by gas effusion method, elastic recoil detection analysis (ERDA), in situ sheet resistance measurements and scanning electron microscopy. Cu layers of 15 and 90 nm in thickness were deposited by e-beam evaporation onto 1 μm a-Si:H films produced by RF glow discharge on Si(100) substrates at 250 °C. The most important effects are observed in the effusion measurements, when pure a-Si:H samples and Cu/a-Si:H samples are compared. For the Cu/a-Si:H samples, three well-defined peaks are observed, one at very low temperature (T=200 °C), another at 380 °C and a high temperature peak at about. However, pure a-Si:H shows only one effusion maxima at 550 °C. The low temperature effusion peaks are directly correlated with steps increases in the sheet resistance measurements. The first one (T=200 °C) is due to the beginning of silicide formation. The H2 evolution at 380 °C is correlated to phase transition in the a-Si:H film. The hydrogen depth profiles obtained by ERDA and SEM observations are also used to describe the aspects of the Cu/a-Si:H interaction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ohmi, T., Saito, T., Shibata, T. and Nitta, T., Proc. 1988 VLSI Multilevel Interconnection Conf., IEEE, New York, 1989, p 135.Google Scholar
2. Robertson, A. E., Hultman, L. G., Hentzell, H. T. G., Hörnström, S. E., Shaonfang, G., and Psaras, P. A., J. Vac. Sci. Technol.A 5(1987)1447.Google Scholar
3. Kawazu, Y., Kudo, H., Onari, S. and Arai, T. Jap. J. of Appl. Phys. 29(1990)2698.Google Scholar
4. Herd, S., Chandhari, P., and Brodsky, mh, J. Non. Cryst. Solids 7(1972)309.Google Scholar
5. Cros, A., Aboelfotoh, M. O., and Tu, K. N. J. Appl. Phys. 67(1990)3328.Google Scholar
6. Echigoya, J., Enoky, H., Satoh, T., Waki, T., Ohmi, T., Otsuki, M. and Shibata, T., Appl. Surf. Science 56–58(1992)463.Google Scholar
7. Russel, S. W., Li, J., and Mayer, J.W., J. Appl. Phys. 70(1991)5153.Google Scholar
8. Frank, T. C., and Falconer, L., Applications of surf. Sci. 14(1982-1983)359.Google Scholar
9. Beyer, W.: in “Tetrahedally-Bonded Amorphous Semicnductors” edited by Adler, D. and Fritsche, H. (Plenum Press, New York,1985)Google Scholar
10. Achete, C., Bernardino, L., Freire, F.l. Jr, to be published.Google Scholar
11. Konno, T. J. and Sinclair, R., Philosophical Mag. B 66(1992)749.Google Scholar