Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T05:45:54.151Z Has data issue: false hasContentIssue false

Hybrid Thermal Behavior from Thermoelectrics to Heat Sinking of a Thin Si Membrane with Stretched Ge Quantum Dots

Published online by Cambridge University Press:  01 February 2011

Jean-Numa Gillet*
Affiliation:
jngillet@gmail.com
Get access

Abstract

A membranous nanomaterial showing, for the first time, a hybrid thermal behavior between insulating and dissipative regimes is proposed with applications in both thermoelectrics (low thermal conductivity) and passive heat sinking (high thermal conductivity). While other compounds could be chosen, the nanomaterial is made up of a thin Si membrane covered by Ge quantum dots (QDs) with epitaxial facets. The QDs are voluntarily stretched in the direction [010] or y parallel to the membrane to form elongated islands. The broken symmetry induces an exalted phonon wave-guiding in y. Therefore, when hot and cold junctions are connected to the membrane following the stretching direction [010], the anisotropic thermal conductivity shows a significant exaltation with respect to the in-plane orthogonal direction [100] or x, where the Ge islands have the smallest average size. An example nanomaterial is obtained by repetition of molecular supercell slabs containing 4348 atoms each. The thermal conductivity shows a marked exaltation higher than 22 folds, from 1.5 to 33.5 W/m/K when the connection direction between the hot and cold junctions is rotated by 90° from x to y. Therefore, the nanomaterial presents a changing thermal behavior from insulation to passive dissipation when the heat propagation direction is modified from x to y. As a result, it could be used for the design of passive heat sinkers (from the phonons) when the two junctions are connected following [010]. In contrast, a thermal insulating behavior appears when the junctions are linked following [100]. This direction can be as well used for cooling applications. However, in this case, cooling is differently generated using the Peltier effect (from the electrons). Seebeck generation can be also envisioned in the direction [100].

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Venkatasubramanian, R. ed. Nanoscale Heat Transport - From Fundamentals to Devices (Mater. Res. Soc. Symp. Proc. Volume 1172E, Warrendale, PA, 2009).Google Scholar
[2] Chowdhury, I. Prasher, R. Lofgreen, K. Chrysler, G. Narasimhan, S. Mahajan, R. Koester, D. Alley, R. Venkatasubramanian, R. Nat. Nanotech. 2009, 4, 235238.10.1038/nnano.2008.417Google Scholar
[3] Gillet, J.-N., Degorce, J.-Y., Meunier, M. Appl. Phys. Lett. 2005, 86, 222104.Google Scholar
[4] Majumdar, A. Nat. Nanotech. 2009, 4, 214215.10.1038/nnano.2009.65Google Scholar
[5] Bohr, M. T. IEEE Trans. Nanotechnol. 2002, 1, 5662.Google Scholar
[6] Semenyuk, V. A. in Thermoelectrics Handbook: Macro to Nano (ed. Rowe, D. M.) 58–1 (CRC Press, 2006).Google Scholar
[7] Senders, G. H. W. Manz, A. Trends Anal. Chem. 2000, 19, 364378.Google Scholar
[8] Blazej, R. Kumaresan, P. Mathies, R. A. Proc. Natl Acad. Sci. 2006, 103, 72407245.10.1073/pnas.0602476103Google Scholar
[9] deMello, A. J. Nature 2006, 442, 394402.10.1038/nature05062Google Scholar
[10] El-Ali, J. Sorger, P. K. Jensen, K. F. Nature 2006, 442, 403411.Google Scholar
[11] Rothemund, P. W. K. Nature 2006, 440, 297302.Google Scholar
[12] Maurice, V. Despert, G. Zanna, S. Bacos, M.-P., Marcus, P. Nat. Mater. 2004, 3, 687691.Google Scholar
[13] Condon, A. Nat. Rev. Genet. 2006, 7, 565575.Google Scholar
[14] Martin, C. R. Kohli, P. Nat. Rev. Drug Discov. 2002, 2, 2937.10.1038/nrd988Google Scholar
[15] Yakimov, A. I. Dvurechenskii, A. V., Nikiforov, A. I. J. Nanoelectron. Optoelectron. 2006, 1, 119175.Google Scholar
[16] Kiravittaya, S. Heidemeyer, H. Schmidt, O. G. Appl. Phys. Lett. 2005, 86, 263113.10.1063/1.1954874Google Scholar
[17] Gillet, J.-N. Outstanding Scientific Paper Award in Proc. 28th International Conference on Thermoelectrics (ITC 2009), 2630 July 2009, Freiburg, Germany.Google Scholar
[18] Gillet, J.-N., Volz, S. J. Electron. Mater., published online, Nov. 2009.Google Scholar
[19] Gillet, J.-N., Chalopin, Y. Volz, S. ASME J. Heat Transfer 2009, 131, 043206.Google Scholar
[20] Venkatasubramanian, R. Siivola, E. Colpitts, T. O'Quinn, B. Nature 2001, 413, 597602.10.1038/35098012Google Scholar
[21] Majumdar, A. Science 2004, 303, 777778.10.1126/science.1093164Google Scholar
[22] Harman, T. C. Taylor, P. J. Walsh, M. P. LaForge, B. E. Science 2002, 297, 22292232.Google Scholar
[23] Tritt, T. M. Böttner, H. Chen, L. MRS Bulletin 2008, 33, 366368.Google Scholar
[24] Madsen, G. K. H. J. Am. Chem. Soc. 2006, 128, 1214112146.Google Scholar
[25] Urban, J. J. Talapin, D. V. Shevchenko, E. V. Murray, C. B. J. Am. Chem. Soc. 2006, 128, 32493255.10.1021/ja058269bGoogle Scholar
[26] Dove, M. T. Introduction to Lattice Dynamics. Cambridge Topics in Mineral Physics and Chemistry, No 4 (Cambridge Univ. Press, 1993).10.1017/CBO9780511619885Google Scholar
[27] Bohren, C. F. Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998).10.1002/9783527618156Google Scholar
[28] van de Hulst, H. C. Light Scattering by Small Particles (Dover, New York, 1981).Google Scholar
[29] Kim, W. Majumdar, A. J. Appl. Phys. 2006, 99, 084306.Google Scholar
[30] McDonald, J. E. Meteorol, J. R.. Soc. 1962, 88, 183186.Google Scholar
[31] Jian, Z. Kaiming, Z. Xide, X. Phys. Rev. B 1990, 41, 1291512918.10.1103/PhysRevB.41.12915Google Scholar
[32] Chalopin, Y. Gillet, J.-N., Volz, S. Phys. Rev. B 2008, 77, 233309.10.1103/PhysRevB.77.233309Google Scholar
[33] Joannopoulus, J. D. Meade, R. D. Winn, J. N. Photonic Crystals (Modeling the Flow of Light) (Princeton Univ. Press, 1995)Google Scholar
[34] Glassbrenner, C. J. Slack, G. A. Phys. Rev. 1964, 134, A1058–A1069.Google Scholar
[35] Cahill, D. G. Watson, S. K. Pohl, R. O. Phys. Rev. B, 1992, 46, 61316140.Google Scholar
[36] Chiritescu, C. Cahill, D. G. Nguyen, N. Johnson, D. Bodapati, A. Keblinski, P. Zschack, P. Science 2007, 315, 351353.Google Scholar
[37] Goldsmid, H. J. in CRC Handbook of Thermoelectrics (ed. Rowe, D. M.) 19–26 (CRC Press, 1992).Google Scholar