Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T22:17:49.564Z Has data issue: false hasContentIssue false

Hybrid SWCNT - NiO Composites for Supercapacitor Applications

Published online by Cambridge University Press:  15 May 2013

Jeffrey R. Alston
Affiliation:
University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, U.S.A
Dylan Brokaw
Affiliation:
University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, U.S.A
Colton Overson
Affiliation:
University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, U.S.A
Thomas A. Schmedake
Affiliation:
University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, U.S.A
Jordan C. Poler
Affiliation:
University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, U.S.A
Get access

Abstract

Supercapacitor devices promise to be an effective means of storing energy, and delivering power for personal electronics, remote sensors, and transportation.1, 2 Rare earth metals, such as ruthenium, have been used and report high value of capacitance, specific power, and energy.4 Nevertheless, the rarity of such metals prevent their practical use. In this study we utilize an earth-abundant nickel and a controlled microwave synthesis to create nickel oxide (NiO) with an optimal nanostructure for capacitance. To surpass the lofty series resistance associated with metal oxides such as NiO, we exploit the conductive properties of single and multi-walled carbon nanotubes. The carbon nanotubes and NiO can benefit from the presence of each other by preventing unnecessary aggregation.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kuperman, A. and Aharon, I., Renewable and Sustainable Energy Reviews 15(2), 981992 (2011).CrossRefGoogle Scholar
Nardecchia, S., Carriazo, D., Ferrer, M. L., Gutierrez, M. C. and del Monte, F., Chemical Society Reviews 42(2), 794830 (2013).CrossRefGoogle Scholar
An, K. H., Kim, W. S., Park, Y. S., Moon, J. M., Bae, D. J., Lim, S. C., Lee, Y. S. and Lee, Y. H., Adv. Funct. Mater. 11(5), 387392 (2001).3.0.CO;2-G>CrossRefGoogle Scholar
Kiamahalleh, M. V., Zein, S. H. S., Najafpour, G., Abd Sata, S. and Buniran, S., Nano 7(2) (2012).CrossRefGoogle Scholar
Liu, C., Li, F., Ma, L.-P. and Cheng, H.-M., Adv. Mater. 22(8), E28E62 (2010).CrossRefGoogle Scholar
Lu, Q., Lattanzi, M. W., Chen, Y., Kou, X., Li, W., Fan, X., Unruh, K. M., Chen, J. G. and Xiao, J. Q., Angewandte Chemie International Edition 50(30), 68476850 (2011).CrossRefGoogle Scholar
Behm, N., Brokaw, D., Overson, C., Peloquin, D. and Poler, J. C., J. Mater. Sci. 48(4), 17111716 (2013).CrossRefGoogle Scholar
Zhu, Z. H., Ping, J., Huang, X. P., Hu, J. G., Chen, Q. Y., Ji, X. B. and Banks, C. E., J. Mater. Sci. 47(1), 503507 (2012).CrossRefGoogle Scholar