Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T14:37:35.259Z Has data issue: false hasContentIssue false

Hybrid Organic-Inorganic Systems Derived from Organotin Nanobuilding Blocks

Published online by Cambridge University Press:  10 February 2011

F. O. Ribot
Affiliation:
Laboratoire de Chimie de la Matiàre Condensáe - Universitá P. et M. Curie / CNRS, 4 Place Jussieu, 75252 Paris, France
C. Eychenne-Baron
Affiliation:
Laboratoire de Chimie de la Matiàre Condensáe - Universitá P. et M. Curie / CNRS, 4 Place Jussieu, 75252 Paris, France
F. Banse
Affiliation:
Laboratoire de Chimie de la Matiàre Condensáe - Universitá P. et M. Curie / CNRS, 4 Place Jussieu, 75252 Paris, France
C. Sanchez
Affiliation:
Laboratoire de Chimie de la Matiàre Condensáe - Universitá P. et M. Curie / CNRS, 4 Place Jussieu, 75252 Paris, France
Get access

Abstract

A new synthesis of the macro-cation {(BuSn)12O4(OH)6}2 is described from commercially available and easy to handle BuSnO(OH) and p-toluene sulfonic acid. A crystalline compound, {(BuSn)12O4(OH)6}(O3SC6H4CH3)2.C4H8O2, is obtained. It can react with tetramethylammonium hydroxide to yield the more versatile composition: {(BuSn)12O4(OH)6}(OH)2. The macro-cations are then used as nanobuilding blocks and assembled in rosary-like structures by carboxyterminated poly(ethyleneglycol). The resulting system can be pictured as hybrid organic-inorganic alternated block co-polymers. Characterizations were performed with 119Sn NMR (solution and solid state), 13C CP-MAS NMR and FT-IR.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Brinker, C.J. and Scherrer, G.W., Sol-Gel Science, the Physics and Chemistry of Sol-Gel Processing, Academic Press, San-Diego, CA, 1990.Google Scholar
2. Novak, B.M., Adv. Mater. 5, 422 (1993).Google Scholar
3. Sanchez, C. and Ribot, F., New J. Chem. 18, 1007 (1994).Google Scholar
4. Schubert, U., Hiising, N. and Lorenz, A., Chem. Mater. 7, 2010 (1995).Google Scholar
5. Loy, D.A. and Shea, K.J., Chem. Rev. 95, 1431 (1995).Google Scholar
6. Holmes, R.R., Acc. Chem. Res. 22, 190 (1989).Google Scholar
7. Puff, H. and Reuter, H., J. Organomet. Chem. 368, 173 (1989).Google Scholar
8. Puff, H. and Reuter, H., J. Organomet. Chem. 373, 173 (1989).Google Scholar
9. Reuter, H., Angew. Chem. Int. Ed. Eng. 30, 1482 (1991).Google Scholar
10. Hoebbel, D., Pitsch, I. and Heidemann, D., Z. Anorg. Allg. Chem. 592, 207 (1991).Google Scholar
11. Jousseaume, B., Lahcini, M., Rascle, M-P., Ribot, F. and Sanchez, C., Organometallics 14, 685 (1995).Google Scholar
12. In, M., Gérardin, C., Lambard, J. and Sanchez, C., J. S. S. T. 5, 101 (1995).Google Scholar
13. Dakternieks, D., Zhu, H., Tiekink, E.R.T. and Colton, R.J., J. Organomet. Chem. 476, 33 (1994).Google Scholar
14. Banse, F., Ribot, F., Tolédano, P. and Sanchez, C., Inorg. Chem. 34, 6371 (1995).Google Scholar
15. Ribot, F., Banse, F. and Sanchez, C., Mater. Res. Soc. Symp. Proc. 346, 121 (1994).Google Scholar
16. Ribot, F., Banse, F., Kehr, G. and Dien, E., unpublished results.Google Scholar
17. Ribot, F., Banse, F., Diter, F. and Sanchez, C., New J. Chem. 19, 1163 (1995).Google Scholar
18. Ribot, F., Banse, F., Sanchez, C., Lahcini, M. and Jousseaume, B., J. S. S. T. in press (1996).Google Scholar
19. Massiot, D., Thiele, H. and Germanus, A., Bruker Rep. 140,43 (1994).Google Scholar
20. Haeberlen, U., Adv. Magn. Reson. Suppl. 1 (1976).Google Scholar
21. Eychenne-Baron, C., Ribot, F., Robert, F. and Sanchez, C., forth coming paper.Google Scholar
22. Reuter, H. and Sebald, A., Z. Naturforsh., 48b 195(1993).Google Scholar
23. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York, NY, 1978.Google Scholar