Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T01:55:46.506Z Has data issue: false hasContentIssue false

Holographic Polymer Dispersed Liquid Crystals: Effect of Partial Matrix Fluorination on Electro-Optical and Morphological Properties

Published online by Cambridge University Press:  15 March 2011

Michael D. Schulte
Affiliation:
Department of MS&E, University of Cincinnati, Cincinnati, OH 45221-0012, U.S.A.
Stephen J. Clarson
Affiliation:
Department of MS&E, University of Cincinnati, Cincinnati, OH 45221-0012, U.S.A.
Lalgudi V. Natarajan
Affiliation:
Science Applications International Corporation, 4031 Colonel Glenn Hwy, Dayton, OH 45431, U.S.A.
C. Allan Guymon
Affiliation:
Department of Polymer Science, University of Southern Mississippi, Hattiesburg, MS 39406-0076, U.S.A.
Timothy J. Bunning
Affiliation:
Air Force Research Laboratory/MLPJ Wright-Patterson Air Force Base, OH 45433-7702, U.S.A.
Get access

Abstract

Holographic polymer dispersed liquid crystal (H-PDLC) films with partially fluorinated matrices were investigated. Electro-optical and morphological studies revealed that fluorinated composites were substantially different from non-fluorinated analogues. The addition of a fluorinated monofunctional acrylate monomer to a pentaacrylate-derived polymer matrix resulted in improved diffraction efficiency. These findings suggest that the partial fluorination of the host polymer decreases the compatibility between the matrix and liquid crystal phase. Morphological differences between fluorinated films and non-fluorinated control specimens were verified using low-voltage, high-resolution scanning electron microscopy (LVHRSEM).

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schulte, M. D., Clarson, S. J., Natarajan, L. V., Tomlin, D. W., Bunning, T. J., Liquid Crystals 27, 467 (2000).Google Scholar
2. Craighead, H. G., Cheng, J., Hackwood, S., Applied Physics Letters 40, 22 (1982).Google Scholar
3. Lougnot, D. J., Noiret, N., Turck, C. N., Pure Appl. Opt. 2, 383 (1993).Google Scholar
4. Sutherland, R. L., Natarajan, L. V., Tondiglia, V. P., Bunning, T. J., Chem. Mater. 5, 1533 (1993).Google Scholar
5. Heavin, S. D., Fung, B. M., Mol. Cryst. Liq. Cryst. 238, 83 (1994).Google Scholar
6. Kogelnik, H., Bell Syst. Tech J., 48, 2909 (1969).Google Scholar
7. Sutherland, R. L., Natarajan, L. V., Tondiglia, V. P., Bunning, T. J., Epling, R. L., Brandelik, D. M., Proc. SPIE 3010, 142 (1997).Google Scholar
8. Schulte, M. D., Clarson, S. J., Natarajan, L. V., Tomlin, D. W., Bunning, T. J., Mol. Cryst. Liq. Cryst. in press August 2001.Google Scholar
9. Anseth, K. S., Kline, L. M., Walker, T. A., Anderson, K. J., Bowman, C. N., Macromolecules 28, 2491 (1995).Google Scholar
10. Fung, B. M., Heavin, S. D., Lin, Z., Jiang, X. Q., Sluss, J. J. Jr, Batchman, T. E., Proc. SPIE 1815, 92 (1992).Google Scholar
11. Wu, B. G., Erdmann, J. H., Doane, J. W., Liquid Crystals 5, 1453 (1989).Google Scholar