Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T13:28:58.108Z Has data issue: false hasContentIssue false

Hole Concentration - Tc Relationships for Nd and Zn Substitutions in YBa2Cu3Oy

Published online by Cambridge University Press:  21 February 2011

Merrill W. Shafer
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598
T. Penney
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598
B. L. Olson
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598
R. L. Greene
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598
Get access

Abstract

One of the intriguing questions involving the copper containing high temperature superconductors is the relationship between the hole concentration and the transition temperature, Tc. We address this question in terms of a proposed “master curve” on a Tc, vs hole concentration plot. This curve shows a maximum at 90K at a hole concentration of approximately 0.2 – 0.22 holes per sheet copper for the 1–2–3 system. In this work we studied the Nd1+xBa2−xCu3Oy and YBa2Cu3−xZnxOy systems to check the validity of this “master curve”. Both Nd and Zn substitutions lower Tc, Nd by reducing the number of holes, consistent with the model given by the curve. The effect of Zn substitution is ambiguous, since both the holes are increased and the Cu-O planes are perturbed. Compensation doping, using both Nd and Zn, shows that the major effect of Zn is to disrupt the Cu-O planes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shafer, M. W., Penney, T., Olson, B. L., Greene, R. L. and Koch, R. I., Phys. Rev. B 39, (1989) 2914 Google Scholar
2. Penney, T., Shafer, M. W. and Olson, B., Int. J. Mod. Physics B, Vol.1, No. 5 (1988) 1235 Google Scholar
3. Tokura, Y., Torrance, J. B., Hluang, T'.C. and Nazzal, A. I., Phys. Rev. B 38 (1988) 7156 Google Scholar
4. Okazaki, N., Kambe, S., Kishi, A., Kanazawa, N., Ohtomo, A., Fukuoka, A., Hasegawa, T., Kishio, K., Kitazawa, K. and Fueki, K., MRS Int. Meeting, Tokyo, May 1988 Google Scholar
5. Shafer, M. W., Penney, T. and Olson, B. L., Phys. Rev. B 36 (1987) 4047 Google Scholar
6. Torrance, J. B., Tokura, Y., Nazzal, A. I., Bezinge, A., Iluang, T. C. and Parkin, S. K., Phys. Rev. Lett. 61 (1988) 1127 Google Scholar
7. Mehbod, M., Biberacher, W., Jansen, A. G. M., Wyder, P., Deltour, R. and Duvigneaud, P. H., Phys Rev. B. 38 (1988) 11813-Google Scholar
8. Gang Xiao, Cieplak, M. Z., Gavrin, A., 17. II. Streitz, Bakhsai, A. and Chien, C. L., Phys. Rev. Lett. 60, (1988) 1446 Google Scholar
9. Zhenhui, H., Han, Z., Shifang, S., Zuyao, C., Qirui, Z. and Jiansheng, X., Solid State Commun. 66 (1988) 1215 Google Scholar
10. Shafer, M. W., Penney, T., Figat, R. A., McGuire, T. R. and Greene, R. L., to be publishedGoogle Scholar
11. Boer, M. L. den, Chang, C. L., Petersen, H., Schaible, M., Reilly, K. and Horn, S., Phys. Rev. B 38 (1988) 6588 Google Scholar
12. Jee, Chan-Soo, Nichols, D., Kebede, A., Rahman, S., Crowe, J. E., Goncalves, A. M. Ponte, Mihalisin, T., Meyer, G. H-., Perez, I. Salomon, R. F., Schlottmann, P., Bloom, S. Fl., Kuric, M. V., Yao, Y. S. and Guertin, R. P., J. Superconductivity, 1, No. 1, (1988) 63 Google Scholar
13. Xiao, Gang, Bakhshai, A., Cieplak, M. Z., Tesanovic, Z. and Chien, C. L., Phys. Rev. B. 39 (1989) 315; M. Z. Cieplak, Gang Xiao, A. Bakhshai and C. L. Chien, Phys. Rev. B 39 (1989) 4222Google Scholar
14. Jayaram, B., Agarwal, S. K., Rao, C. V. Narasimha, and Narlikar, A. V., Phys. Rev. B. 38 (1988) 2903 Google Scholar