Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T19:18:05.487Z Has data issue: false hasContentIssue false

High-Throughput Screening of Barrier and Adhesive Behavior of Polymeric Coatings

Published online by Cambridge University Press:  26 February 2011

Jaime C. Grunlan
Affiliation:
jgrunlan@tamu.edu, Texas A&M University, Mechanical Engineering, 3123-Texas A&M University, College Station, Texas, 77843-3123, United States, (979) 845-3027, (979) 862-3989
Ali R. Mehrabi
Affiliation:
ali.mehrabi@averydennison.com, Avery Dennison Corporation, Avery Research Center, United States
Get access

Abstract

A combinatorial factory for the preparation and screening of polymeric coatings was developed. Coating formulations were prepared and coated using novel combinatorial techniques to obtain libraries of varying composition and thickness. The thickness of each film in a combinatorial array is rapidly determined via visible-light absorbance of optical dyes in conjunction with the Beer-Lambert relationship. These combinatorial libraries were then tested and screened using a variety of custom-made high-throughput methods. Combinatorial screening of oxygen and moisture vapor transmission rate, along with adhesive properties, are shown here. OTR and MVTR are determined using spectroscopic techniques. For adhesion, a spherical probe adhesive tester is able to generate parameters linked to tack, peel, and shear in one measurement. In addition to describing the testing methodology, benefits and shortcomings of these techniques will be highlighted.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Devlin, J. P., High Throughput Screening: The Discovery of Bioactive Substances(Marcel Dekker, 1997).Google Scholar
2. Doyle, P. M., J. Chem. Technol. Biotech. 64, 317324 (1995).Google Scholar
3. Gordon, E. M. and Kerwin, J. F. Jr., Combinatorial Chemistry and Molecular Diversity in Drug Discovery (Wiley, 1998).Google Scholar
4. Aramendia, M. A., Borau, V., Jimenez, C., Marinas, J. M., Romero, F. J., and Urbano, F. J., J. Catalysis 209, 413416 (2002).Google Scholar
5. Meredith, J. C., Karim, A., and Amis, E. J., MRS Bulletin 27, 330335 (2002).Google Scholar
6. Sadagopan, D. and Pitchumani, R., J. Mech. Design 119 494503 (1997).Google Scholar
7. Nobile, M. A. Del, Fava, P., and Piergiovanni, L., J. Food Eng. 53, 295300 (2002).Google Scholar
8. Brennan, A. M., TAPPI 75, 145148 (1992).Google Scholar
9. Yoon, D. S. and Roh, J. S., Adv. Func. Mater. 12, 373381 (2002).Google Scholar
10. Morgan, P. W., Ind. Eng. Chem. 45, 22962306 (1953).Google Scholar
11. Motegi, S., Bull. Jap. Soc. Sci. Fish. 45, 205209 (1979).Google Scholar
12. Park, J. H., Hong, D. H., Kim, Y. B., and Choi, D. K., J. Appl. Phys. 91, 1002210027 (2002).Google Scholar
13. Raimundo, I. M. and Narayanaswamy, R., Analyst 124, 16231627 (1999).Google Scholar
14. Brook, T. E., Taib, R., and Narayanasawamy, R., Sensors and Actuators B 38–39, 272276 (1997).Google Scholar
15. Otsuki, S., Adachi, K., and Taguchi, T., Sensors and Actuators B 53, 9196 (1998).Google Scholar
16. Sadoaka, Y., Matsuguchi, M., Sakai, Y., and Murata, Y., Sensors and Actuators B 7, 443446(1992).Google Scholar
17. Sadoaka, Y., Matsuguchi, M., Sakai, Y., Murata, Y., J. Mater. Sci. 27, 50955100 (1992).Google Scholar
18. Choi, M. M. F. and Tse, O. L., Anal. Chim. Acta 378, 127134 (1999).Google Scholar
19. Rharbi, Y., Yekta, A., and Winnik, M. A., Anal. Chem. 71, 50455053 (1999).Google Scholar
20. Amao, Y., Asai, K., Okura, I., Shinohara, H., and Nishide, H., Analyst 125, 19111914 (2000).Google Scholar
21. Hartmann, P., and Tettnak, W., Anal. Chem. 68, 26152620 (1996).Google Scholar
22. Barnikol, W. K. R., Gaertner, Th., and Weiler, N., Rev. Sci. Instr. 59, 12041208 (1988).Google Scholar
23. Carraway, E. R., Demas, J. N., DeGraff, B. A., Langmuir 7, 29912998 (1991).Google Scholar
24. Grunlan, J. C., Mehrabi, A. R., Chavira, A. T., Nugent, A. B., and Saunders, D. L., J. Combi. Chem. 5, 362368 (2003).Google Scholar
25. Grunlan, J. C., Saunders, D., Akhave, J., Licon, M., Murga, M., Chavira, A., and Mehrabi, A. R. in High-Throughput Analysis, edited by Potyrailo, R. A. and Amis, E. J. (Kluwer Academic, 2003) Ch. 14.Google Scholar
26. Chuang, H. K., Chiu, C., and Paniagua, R., Adhesives Age 40, 1823 (1997).Google Scholar
27. Grunlan, J. C., Holguin, D. L., Chuang, H. K., Perez, I., Chavira, A., Quilatan, R., Akhave, J., and Mehrabi, A. R., Macromolecular Rapid Comm. 25, 286291 (2004).Google Scholar
28. Grunlan, J. C., Mehrabi, A. R., and Ly, T., Meas. Sci. Technol. 16, 153161 (2005).Google Scholar
29. Initial MHTS experiments used a simple linear extrapolation from only one reference film, rather than the multiple reference polynomial fit used more recently. This linear approximation is only valid when the sample of interest has an MVTR within 10% of the reference film being used.Google Scholar
30. Bharadwaj, R. K., Mehrabi, A. R., Hamilton, C., Trujillo, C., Murga, M., Fan, R., Chavira, A., and Thompson, A. K., Polymer 43, 36993705 (2002).Google Scholar