Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T13:43:46.307Z Has data issue: false hasContentIssue false

High-Temperature Reliability of GaN Electronic Devices

Published online by Cambridge University Press:  03 September 2012

Seikoh Yoshida
Affiliation:
Yokohama R&D Laboratories, The Furukawa Electric Co., Ltd.2-4-3, Okano, Nishi-ku, Yokohama, 220-0073, Japan, seikoh@yokoken.furukawa.co.jp
Joe Suzuki
Affiliation:
Yokohama R&D Laboratories, The Furukawa Electric Co., Ltd.2-4-3, Okano, Nishi-ku, Yokohama, 220-0073, Japan
Get access

Abstract

High-quality GaN was grown using gas-source molecular-beam epitaxy (GSMBE). The mobility of undoped GaN was 350 cm2/Vsec and the carrier concentration was 6×1016 cm−3 at room temperature. A GaN metal semiconductor field-effect transistor (MESFET) and an n-p-n GaN bipolar junction transistor (BJT) were fabricated for hightemperature operation. The high-temperature reliability of the GaN MESFET was also investigated. That is, the lifetime of the FET at 673 K was examined by continuous current injection at 673 K. We confirmed that the FET performance did not change at 673 K for over 1010 h. The aging performance of the BJT at 573 K was examined during continuous current injection at 573 K for over 850 h. The BJT performance did not change at 573 K. The current gain was about 10. No degradation of the metalsemiconductor interface was observed by secondary ion-mass spectrometry (SIMS) and transmission electron microscopy (TEM). It was also confirmed by using Si-ion implantation that the contact resistivity of the GaN surface and electrode materials could be lowered to 7×10-6 ohmcm2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chow, T. P. and Tyagi, R., IEEE Trans. Electron Devices 41, 1481 (1994).Google Scholar
2. Morkoc, H., Strites, S., Gao, G. B., Lin, M. E., Sverdlov, B. and Burns, M., J. Appl. Phys. 76, 1363 (1994).Google Scholar
3. Binari, S. C., Rowland, B. L., Kruppa, W., Kelner, G., Doverspike, K., and Gaskill, D. K., Electron. 30, 1248 (1994).Google Scholar
4. Khan, M. A., Shur, M. S., Kuzunia, J. N., Chin, Q., Burm, J. and Schaff, W., Appl. Phys. 66, 1083 (1995).Google Scholar
5. Ozgur, A., Kim, W., Fan, Z., Botchkarev, A., Salvador, A., Mohammad, S. N., Sverdlov, B. and Morko, H., Electron. 31, 1389 (1995).Google Scholar
6. Akutas, O., Fan, Z. F., Mohammad, S. N., Botchkarev, A. E. and Morko, H., Appl. Phys. 69, 3872 (1996).Google Scholar
7. Binari, S. C., Doverspike, K., Kelner, G., Dietrich, H. B. and Wickenden, A. E., Solid State Electron. 41, 97 (1997).Google Scholar
8. Yoshida, S., J. Appl. Phys. 81, 1673 (1997).Google Scholar
9. Yoshida, S., J. Cryst. Growth, 181, 293 (1997).Google Scholar
10. Yoshida, S. and Suzuki, J., Jpn. J. Appl. Phys. 37, L482 (1998).Google Scholar
11. Yoshida, S. and Suzuki, J., J. Appl. Phys. 84, 2940 (1998).Google Scholar
12. Pankov, J., Chang, S. S., Lee, H. C., Molnar, R. J., Moustakas, T. D. and Zeghbroeck, B. Van, IEDM Tech. Dig., 389 (1994).Google Scholar
13. Carthy, L. S. Mc, Kozodoy, P., Rodwell, M. J. W., Denbaars, S. P. and Mishra, U. K., IEEE Electron Device. Lett. 20, 277 (1998).Google Scholar
14. Yoshida, S. and Suzuki, J., J.Appl. Phys. 85, 7931 (1999).Google Scholar
15. Yoshida, S. and Suzuki, J., Jpn. J. Appl. Phys. 38, L851 (1999).Google Scholar