Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T13:55:40.114Z Has data issue: false hasContentIssue false

High-Performance MIM Capacitors based on TiO2/ZrO2/TiO2 and AlO-doped TiO2/ZrO2/TiO2 Dielectric Stacks for DRAM Applications

Published online by Cambridge University Press:  27 June 2013

Revathy Padmanabhan
Affiliation:
Dept. of Electrical Communication Engineering, Indian Institute of Science, Bangalore, India. Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India.
Navakanta Bhat
Affiliation:
Dept. of Electrical Communication Engineering, Indian Institute of Science, Bangalore, India. Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India.
S. Mohan
Affiliation:
Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India.
Y. Morozumi
Affiliation:
Tokyo Electron Tohoku Limited, Yamanashi, Japan.
Sanjeev Kaushal
Affiliation:
Tokyo Electron Santa Clara Labs, Santa Clara, CA, United States.
Get access

Abstract

Metal-insulator-metal (MIM) capacitors for DRAM applications have been realized using TiO2/ZrO2/TiO2 (TZT) and AlO-doped TZT (TZAZT and TZAZAZT) dielectric stacks. High capacitance densities of about 46.6 fF/μm2 (for TZT stacks), 46.2 fF/μm2 (for TZAZT stacks), and 46.8 fF/μm2 (for TZAZAZT stacks) have been achieved. Low leakage current densities of about 4.9×10−8 A/cm2, 5.5×10−9 A/cm2, and 9.7×10−9 A/cm2 (at -1 V) have been obtained for TZT, TZAZT, and TZAZAZT stacks, respectively. We analyze the leakage current mechanisms at different electric field regimes, and compute the barrier heights. The effects of constant current stress and constant voltage stress on the device characteristics are studied, and excellent device reliability is demonstrated. We compare the device performance of the fabricated capacitors with other stacked high-k MIM capacitors reported in recent literature.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

RF and Analog/Mixed-Signal Technologies for Wireless Communications, International Technology Roadmap for Semiconductors (Semiconductor Industry Association 2009 ed.).Google Scholar
Hourdakis, E., and Nassiopoulou, A. G., IEEE Trans. Electron Devices, 57, 2679, (2010).CrossRefGoogle Scholar
Lukosius, M., Baristiran Kaynak, C., Rushworth, S., and Wenger, Ch., J. Electrochem. Soc., 158, G119, (2011).CrossRefGoogle Scholar
Tsai, C. Y., Chiang, K. C., Lin, S. H., Hsu, K. C., Chi, C. C., and Chin, A., IEEE Electron Device Lett., 31, 749, (2010).CrossRefGoogle Scholar
Thomas, M., Farcy, A., Perrot, C., Deloffre, E., Gros-Jean, M., Benoit, D., Richard, C., Caubet, P., Guillaumet, S., Pantel, R., Cordeau, M., Piquet, J., Bermond, C., Flechet, B., Chenevier, B., and Torres, J., VLSI Symp. Tech. Dig., 2007, 5859.Google Scholar
Cheng, C. H., Lin, S. H., Jhou, K. Y., Chen, W. J., Chou, C. P., Yeh, F. S., Hu, J., Hwang, M., Arikado, T., McAlister, S. P., and Chin, A., IEEE Electron Device Lett., 29, 845, (2008).CrossRefGoogle Scholar
Chiang, K. C., Cheng, C. H., Jhou, K. Y., Pan, H. C., Hsiao, C. N., Chou, C. P., McAlister, S. P., Chin, A., and Hwang, H. L., IEEE Electron Device Lett., 28, 694, (2007).CrossRefGoogle Scholar
Wu, Y. -H., Kao, C. -K., Chen, B. -Y., Lin, Y. -S., Li, M. -Y., and Wu, H. -C., Appl. Phys. Lett., 93, 033511, (2008).CrossRefGoogle Scholar
Lin, S. H., Chiang, K. C., Chin, A., and Yeh, F. S., IEEE Electron Device Lett., 30, 715, (2009).CrossRefGoogle Scholar
Wu, Y. -H., Lin, C. -C., Hu, Y. -C., Wu, M. -L., Wu, J. -R., and Chen, L. -L., IEEE Electron Device Lett., 32, 1107, (2011).CrossRefGoogle Scholar
Kahn, M., Vallee, C., Defay, E., Dubourdieu, C., Bonvalot, M., Blonkowski, S., Plaussu, J. -R., Garrec, P., Baron, T., Microelectron. Rel., 47, 773, (2007).CrossRefGoogle Scholar
Tsai, C. Y., Chiang, K. C., Lin, S. H., Hsu, K. C., Chi, C. C., and Chin, A., IEEE Electron Device Lett., 31, 749, (2010).CrossRefGoogle Scholar
Monaghan, S., Cherkaoui, K., O’Connor, É., Djara, V., Hurley, P. K., Oberbeck, L., Tois, E., Wilde, L., and Teichert, S., IEEE Electron Device Lett., 30, 219, (2009).CrossRefGoogle Scholar
Kim, J.-H., Ignatova, V., Kücher, P., Heitmann, J., Oberbeck, L., Schröder, U., Thin Solid Films, 516, 8333, (2008).CrossRefGoogle Scholar
Ding, S.-J., Hu, H., Zhu, C., Kim, S. J., Yu, X., Li, M.-F., Cho, B. J., Chan, D. S. H., Yu, M. B., Rustagi, S. C., Chin, A., and Kwong, D.-L., IEEE Trans. Electron Devices, 51, 886, (2004).CrossRefGoogle Scholar
Sedghi, N., Davey, W., Mitrovic, I. Z. and Hall, S, J. Vac. Sci. Technol. B, 29, 01AB10, (2011).Google Scholar
Cheng, C.-H., Chiang, K.-C., Pan, H.-C., Hsiao, C.-N., Chou, C.-P., Mcalister, S. P., and Chin, A., Jpn. J. Appl. Phys., 46, 7300, (2007).CrossRefGoogle Scholar
Besset, C., Bruyere, S., Blonkowski, S., Cremer, S., and Vincent, E., Microelectron. Reliab., 43, 1237, (2003).CrossRefGoogle Scholar