Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T01:53:50.269Z Has data issue: false hasContentIssue false

Highly-Tunable Polymer/CNTs Nanostructures: A Rapid and Facile Approach for Controlled Architecture and Composition

Published online by Cambridge University Press:  10 April 2013

Guy Mechrez
Affiliation:
Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel.
Ran Y. Suckeveriene
Affiliation:
Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel.
Moshe Narkis
Affiliation:
Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel.
Ester Segal
Affiliation:
Department of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel The Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 32000, Israel
Get access

Abstract

This research presents a new fabrication method for tailoring polymer/carbon nanotubes (CNTs) nanostructures with controlled architecture and composition. The CNTs are finely dispersed in a polymeric latex i.e. polyacrylate, via ultrasonication, followed by a microfiltration process. The later step allows preserving the homogeneous dispersion structure in the resulting solid nanocomposite. The combination of microfiltration and proper choice of the polymer latex allows for the design of complex nanostructures with tunable properties e.g., porosity, mechanical properties. An important attribute of this methodology is the ability to tailor any desired composition of polymer-CNTs systems, i.e., nanotubes content can practically vary anywhere between 0 to 100 wt%. Thus, for the first time a given polymer/CNTs system is studied over the entire CNTs composition, resembling immiscible binary polymer blends. The polymer in these systems exhibits a structural transition from a continuous matrix (nanocomposite) to segregated domains dispersed within a porous CNTs network. An analogy of this structural transition to phase inversion phenomena in immiscible polymer blends is suggested.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Grossiord, N., Loos, J., Regev, O. and Koning, C.E., Chemistry of Materials 18, 1089 (2006).CrossRefGoogle Scholar
Grossiord, N., Loos, J., van Laake, L., Maugey, M., Zakri, C., Koning, C.E. and Hart, A.J., Advanced Functional Materials 18, 3226 (2008).CrossRefGoogle Scholar
Breuer, O. and Sundararaj, U., Polymer Composites 25, 630 (2004).CrossRefGoogle Scholar
Zhang, D., Ryu, K., Liu, X., Polikarpov, E., Ly, J., Tompson, M.E. and Zhou, C., Nano Letters 6, 1880 (2006).CrossRefGoogle Scholar
Choi, W., Ohtani, S., Oyaizu, K., Nishide, H. and Geckeler, K.E., Advanced Materials 23, 4440 (2011).CrossRefGoogle Scholar
Goldman, D. and Lellouche, J.-P., Carbon 48, 4170 (2010).CrossRefGoogle Scholar
Antonietti, M., Shen, Y., Nakanishi, T., Manuelian, M., Campbell, R., Gwee, L., Elabd, Y.A., Tambe, N., Crombez, R. and Texter, J., ACS Appl. Mater. Interfaces 2, 649 (2010).CrossRefGoogle Scholar
Kara, S., Arda, E., Dolastir, F. and Pekcan, O., J. Colloid Interface Sci. 344, 395 (2010).CrossRefGoogle Scholar
Kim, D.-Y., Kim, Y.-S., Choi, K.-W., Grunlan, J.C. and Yu, C.-H., ACS Nano 4, 513 (2010).CrossRefGoogle Scholar
Mu, M., Walker, A.M., Torkelson, J.M. and Winey, K.I., Polymer 49, 1332 (2008).CrossRefGoogle Scholar
Park, E.J., Hong, S., Park, D.W. and Shim, S.E., Colloid Polym. Sci. 288, 47 (2010).CrossRefGoogle Scholar
Yu, C., Kim, Y.S., Kim, D. and Grunlan, J.C., Nano Lett. 8, 4428 (2008).CrossRefGoogle Scholar
Yu, J., Lu, K., Sourty, E., Grossiord, N., Koning, C.E. and Loos, J., Carbon 45, 2897 (2007).CrossRefGoogle Scholar
Das, R.K., Liu, B., Reynolds, J.R. and Rinzler, A.G., Nano Letters 9, 677 (2009).CrossRefGoogle Scholar
Dionigi, C., Stoliar, P., Ruani, G., Quiroga, S.D., Facchini, M. and Biscarini, F., Journal of Materials Chemistry 17, 3681 (2007).CrossRefGoogle Scholar
Hermant, M.C., Verhulst, M., Kyrylyuk, A.V., Klumperman, B. and Koning, C.E., Compos. Sci. Technol. 69, 656 (2009).CrossRefGoogle Scholar
Mechrez, G., Suckeveriene, R.Y., Zelikman, E., Rosen, J., Ariel-Sternberg, N., Cohen, R., Narkis, M. and Segal, E., ACS Macro Letters 1, 848 (2012).CrossRefGoogle Scholar
Green, M.J., Behabtu, N., Pasquali, M. and Adams, W.W., Polymer 50, 4979 (2009).CrossRefGoogle Scholar
Fakhri, N., MacKintosh Frederick, C., Lounis, B., Cognet, L. and Pasquali, M., Science 330, 1804 (2010).CrossRefGoogle Scholar
Duggal, R. and Pasquali, M., Phys Rev Lett 96, 246104 (2006).CrossRefGoogle Scholar
Talmon, Y., Surfactant Sci. Ser. 83, 147 (1999).Google Scholar
Kimura, T., Ago, H., Tobita, M., Ohshima, S., Kyotani, M. and Yumura, M., Adv. Mater. (Weinheim, Ger.) 14, 1380 (2002).3.0.CO;2-V>CrossRefGoogle Scholar
Park, S.H. and Bandaru, P.R., Polymer 51, 5071 (2010).CrossRefGoogle Scholar
Zeng, Y., Liu, P., Du, J., Zhao, L., Ajayan, P.M. and Cheng, H.-M., Carbon 48, 3551 (2010).CrossRefGoogle Scholar
Cao, Q., Song, Y., Tan, Y. and Zheng, Q., Polymer 50, 6350 (2009).CrossRefGoogle Scholar
Shamir, D., Siegmann, A. and Narkis, M., J. Appl. Polym. Sci. 115, 1922 (2010).CrossRefGoogle Scholar
Shemesh, R., Siegmann, A., Tchoudakov, R. and Narkis, M., J. Appl. Polym. Sci. 102, 1688 (2006).CrossRefGoogle Scholar
Zhao, Z., Zheng, W., Yu, W. and Long, B., Carbon 47, 2118 (2009).CrossRefGoogle Scholar
Wang, T., Lei, C.-H., Dalton, A.B., Creton, C., Lin, Y., Fernando, K.A.S., Sun, Y.-P., Manea, M., Asua, J.M. and Keddie, J.L., Adv. Mater. (Weinheim, Ger.) 18, 2730 (2006).CrossRefGoogle Scholar
Park, J.G., Yun, N.G., Park, Y.B., Liang, R., Lumata, L., Brooks, J.S., Zhang, C. and Wang, B., Carbon 48, 4276 (2010).CrossRefGoogle Scholar
Izadi-Najafabadi, A., Yamada, T., Futaba, D.N., Yudasaka, M., Takagi, H., Hatori, H., Iijima, S. and Hata, K., ACS Nano 5, 811 (2011).CrossRefGoogle Scholar
Cha, S.I., Kim, K.T., Lee, K.H., Mo, C.B., Jeong, Y.J. and Hong, S.H., Carbon 46, 482 (2008).CrossRefGoogle Scholar
Mechrez, G., Suckeveriene, R.Y., Tchoudakov, R., Kigly, A., Segal, E. and Narkis, M., J. Mater. Sci. 47, 6131 (2012).CrossRefGoogle Scholar