Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T23:46:03.181Z Has data issue: false hasContentIssue false

A Highly Soluble Redox Shuttle with Superior Rate Performance in Overcharge Protection

Published online by Cambridge University Press:  02 March 2015

Susan A. Odom
Affiliation:
Department of Chemistry, University of Kentucky, Lexington, KY 40506, U.S.A.
Aman Kaur
Affiliation:
Department of Chemistry, University of Kentucky, Lexington, KY 40506, U.S.A.
Selin Ergun
Affiliation:
Department of Chemistry, University of Kentucky, Lexington, KY 40506, U.S.A.
Corrine F. Elliott
Affiliation:
Department of Chemistry, University of Kentucky, Lexington, KY 40506, U.S.A.
Matthew D. Casselman
Affiliation:
Department of Chemistry, University of Kentucky, Lexington, KY 40506, U.S.A.
Get access

Abstract

The demand for a stable and compatible redox shuttles for use in lithium-ion batteries has prompted us to explore strategies to tune and improve the properties of redox shuttles. We have studied over 50 new diarylamine derivatives synthesized in our laboratory including one compound in which we introduced trifluoromethyl groups (–CF3) at the positions para to the nitrogen atom in N-ethylphenothiazine (EPT). The high electronegativity of the CF3 group raises the oxidation potential, and its incorporation also significantly increases solubility in battery electrolyte. Here we report 3,7-bis(trifluoromethyl)-N-ethylphenothiazine (BCF3EPT) as a new redox shuttle, which we have observed to have the highest reported solubility in battery electrolyte of all redox shuttles that maintain extended overcharge performance. We have compared its performance with 1,3-di-tert-butyl-2,5-dimethoxybenzene (DBB), EPT, and other robust redox shuttles. In our hands, overcharge cycling of BCF3EPT far surpasses any reported redox shuttle, and – because it can be dissolved at higher concentrations – it tolerates faster charging rates than both DBB and EPT.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chen, Z., Qin, Y. and Amine, K., Electrochim. Acta 54, 56055613 (2009).CrossRefGoogle Scholar
Ergun, S., Elliott, C. F., Kaur, A. P., Parkin, S. R. and Odom, S. A., J. Phys. Chem. C 118, 1482414832 (2014).CrossRefGoogle Scholar
Ergun, S., Elliott, C. F., Kaur, A. P., Parkin, S. R. and Odom, S. A., Chem. Commun. 50, 53395341 (2014).CrossRefGoogle Scholar
Kaur, A. P., Ergun, S., Elliott, C. F. and Odom, S. A., J. Mat. Chem. A, 2, 1819018193 (2014).CrossRefGoogle Scholar
Narayana, K. A., Casselman, M. D., Elliott, C. F., Ergun, S., Parkin, S. R., Risko, C. and Odom, S. A., Chem Phys Chem, manuscript accepted for publication.Google Scholar
Odom, S. A., Ergun, S., Poudel, P. P. and Parkin, S. R., Energy Environ.l Sci. 7, 760767 (2014).CrossRefGoogle Scholar
Chen, J., Buhrmester, C. and Dahn, J. R., Electrochem. Solid-State Lett. 8, A59A62 (2005).CrossRefGoogle Scholar
Dahn, J. R., Jiang, J., Moshurchak, L. M., Fleischauer, M. D., Buhrmester, C. and Krause, L. J., J. Electrochem. Soc. 152, A1283A1289 (2005).CrossRefGoogle Scholar
Moshurchak, L. M., Buhrmester, C. and Dahn, J. R., J. Electrochem. Soc. 152, A1279A1282 (2005).CrossRefGoogle Scholar
Moshurchak, L. M., Buhrmester, C., Wang, R. L. and Dahn, J. R., Electrochim. Acta 52, 37793784 (2007).CrossRefGoogle Scholar
Feng, J. K., Ai, X. P., Cao, Y. L. and Yang, H. X., Electrochem. Commun., 2007, 9, 2530.CrossRefGoogle Scholar
Zhang, Z., Zhang, L., Schlueter, J. A., Redfern, P. C., Curtiss, L. and Amine, K., J. Power Sources 195, 49574962 (2010).CrossRefGoogle Scholar
Weng, W., Zhang, Z., Redfern, P. C., Curtiss, L. A. and Amine, K., J. Power Sources 196, 15301536 (2011).CrossRefGoogle Scholar
Zhang, L., Zhang, Z., Redfern, P. C., Curtiss, L. A. and Amine, K., Energy Environ. Sci. 5, 82048207 (2012).CrossRefGoogle Scholar
Buhrmester, C., Moshurchak, L., Wang, R. L. and Dahn, J. R., J. Electrochem. Soc. 153, A288A294 (2006).CrossRefGoogle Scholar
Brushett, F. R., Vaughey, J. T. and Jansen, A. N., Adv. Energy Mater. 2, 13901396 (2012).CrossRefGoogle Scholar