Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T04:15:15.188Z Has data issue: false hasContentIssue false

High transversal relaxivities of silica coated multicore iron oxide nanoparticles suitable for magnetic resonance imaging

Published online by Cambridge University Press:  01 February 2011

Anna Roig
Affiliation:
etaboada@icmab.es, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Bellaterra, Spain
Elena Taboada
Affiliation:
elisenda.rodriguez@gmail.com, Institut d'Investigacions Biomèdiques de Barcelona (IIBM-CSIC), Barcelona, Spain
Elisenda Rodríguez
Affiliation:
roig@icmab.es, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Bellaterra, Spain
Get access

Abstract

We report on high transversal relaxivity values of composite iron oxide-silica nanoparticles. To obtain the material, pre-formed maghemite nanoparticles were coated with silica by sol-gel chemistry, using supercritical fluids as the reaction media. The composite particles were monodisperse and consisted of a core of several maghemite nanoparticles, surrounded by a thick silica shell. The high pressure and high temperature process did not affect the iron oxide particle size but induced an increase on their saturation magnetization values, possibly due to an improvement of the particle crystallinity. These iron oxide-based materials present very high transversal relaxivity values which can be correlated to the magnetic moment and to the silica shell width of the composite particles. Moreover, composite particles are not cytotoxic and they are dispersable in polar solvents.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Laurent, S., forge, D., Port, M., Roch, A., Robic, C., Elst, L. V. and Muller, R. N., Chem Rev, 108, 20642110 (2008).Google Scholar
2 Rinck, P. A., Magnetic Resonance in Medicine. Vienna 2001. Blackwell Science.Google Scholar
3 Taboada, E., Solanas, R., Rodríguez, E., R, Weissleder, and Roig, A., Advanced Functional Materials, 19, 23192324 (2009).Google Scholar
4 Chen, D.-X., Sanchez, A., Taboada, E., Roig, A., Sun, N., an Gu, H.-C., J of Appl. Phys 105, 083924 (2009).Google Scholar
5 Taboada, E., PhD Thesis, Universitat Autònoma de Barcelona (2009).Google Scholar
6 Taboada, E., Rodriguez, E., Roig, A., Oro, J., Roch, A., and Muller, R. N., Langmuir, 23, (8), 45834588 (2007).Google Scholar
7 Qiao, R., Yang, C., and Gao, M., J. Mater. Chem. 19, 62746293 (2009).Google Scholar
8 Roca, A., Veintemillas-Verdaguer, S., Port, M., Robic, C., Serna, C. J. and Morales, M., J. Phys. Chem. 113, 70337039, (2009).Google Scholar
9 Barik, K. C., Aslam, M., Prasad, P., Dravid, V. and Bahadur, D., J. Magn. Magn. Mater., 321, 15291532 (2009).Google Scholar
10 Tsai, Z., Wang, J., Kuo, H., Shen, C., Wang, J. and Yeng, T., J. Magn. Magn. Mater., 322, 208213 (2010).Google Scholar
11 Matsumoto, Y., Jasanoff, A., Magnetic Resonance Imaging, 26, 994998 (2008).Google Scholar