Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T15:11:08.727Z Has data issue: false hasContentIssue false

High Temperature Thermoelectric Properties of Nano-Bulk Silicon and Silicon Germanium

Published online by Cambridge University Press:  31 January 2011

Sabah Bux
Affiliation:
sabahkb@chem.ucla.edu, University of California at Los Angeles, Department of Chemistry and California NanoSystems Institute, Los Angeles, California, United States
Jean-Pierre Fleurial
Affiliation:
jean-pierre.fleurial@jpl.nasa.gov, Jet Propulsion Laboratory, California Institute of Technology, Power and Sensor Systems, Pasadena, California, United States
Richard G. Blair
Affiliation:
rblair@mail.ucf.edu, University of Central Florida, Department of Chemistry, Orlando, California, United States
Pawan K. Gogna
Affiliation:
pkgogna@jpl.nasa.gov, Jet Propulsion Laboratory, California Institute of Technology, Power and Sensor Systems, Pasadena, California, United States
Thierry Caillat
Affiliation:
thierry.caillat@jpl.nasa.gov, Jet Propulsion Laboratory, California Institute of Technology, Power and Sensor Systems, Pasadena, California, United States
Richard B Kaner
Affiliation:
kaner@chem.ucla.edu, University of California at Los Angeles, Department of Chemistry, Los Angeles, California, United States
Get access

Abstract

Point defect scattering via the formation of solid solutions to reduce the lattice thermal conductivity has been an effective method for increasing ZT in state-of-the-art thermoelectric materials such as Si-Ge, Bi2Te3-Sb2Te3 and PbTe-SnTe. However, increases in ZT are limited by a concurrent decrease in charge carrier mobility values. The search for effective methods for decoupling electronic and thermal transport led to the study of low dimensional thin film and wire structures, in particular because scattering rates for phonons and electrons can be better independently controlled. While promising results have been achieved on several material systems, integration of low dimensional structures into practical power generation devices that need to operate across large temperature differential is extremely challenging. We present achieving similar effects on the bulk scale via high pressure sintering of doped and undoped Si and Si-Ge nanoparticles. The nanoparticles are prepared via techniques that include high energy ball milling of the pure elements. The nanostructure of the materials is confirmed by powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and dynamic light scattering. Thermal conductivity measurements on the densified pellets show a drastic 90% reduction in the lattice contribution at room temperature when compared to doped single crystal Si. Additionally, Hall effect measurements show a much more limited degradation in the carrier mobility. The combination of low thermal conductivity and high power factor in heavily doped n-type nanostructured bulk Si leads to an unprecedented increase in ZT at 1275 K by a factor of 3.5 over that of single crystalline samples. Experimental results on both n-type and p-type Si are discussed in terms of the impact of the size distribution of the nanoparticles, doping impurities and nanoparticle synthesis processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Rowe, D. M. (Ed) CRC Handbook of Thermoelectrics, CRC, Boca Raton, Florida, USA (1995).Google Scholar
2 Synder, G. J., Toberer, E. S.. Nat. Mater. 7, 105 (2008).Google Scholar
3 Hicks, L. D. and Dresselhaus, M. S., Physical Review B, 47, 16631 (1993).Google Scholar
4 Hicks, L. D. and Dresselhaus, M. S., Physical Review B, 47, 12727 (1993)Google Scholar
5 Venkatasubramanian, R., Siivola, E., Colpitts, T., O'Quinn, B.. Nature. 413, 597 (2001).10.1038/35098012Google Scholar
6 Harman, T. C., Taylor, P. J., Walsh, M. P., LaForge, B. E.. Science. 297, 2229 (2002).Google Scholar
7 Boukai, A., Bunimovich, Y., Jamil, T.-K., Yu, J.-K., Goddard, W. A., Heath, J. R.. Nature. 451, 168 (2008)Google Scholar
8 Hochbaum, A. I., Chen, R., Delgado, R. D., Liang, W., Garnett, E. C., Najarian, M., Majumdar, A., Yang, P.. Nature. 451, 163 (2008).Google Scholar
9 Zhao, X. B., Zhu, T. J., Ji, X. H.. in CRC Handbook of Thermoelectrics Macro to Nano. (Ed. Rowe, D. M.), Boca-Raton, Florida, USA, 24-1 (2006).Google Scholar
10 Ji, X., He, J., Alboni, P., Su, Z., Gothard, N., Zhang, B., Tritt, T. M., Kolis, J. W.. Phys. Stat. Sol. (RRL). 1, 229 (2007).Google Scholar
11 Hsu, K. F., Loo, S., Guo, F., Chen, W., Dyck, J. S., Uher, C., Hogan, T., Polychroniadis, E. K., Kanatzidis, M.G.. Science. 303, 818 (2004).Google Scholar
12 Vandersande, J. W., Wood, C., Zoltan, A., Whittenberger, D.. Thermal Conductivity, 19, 445 (1988).Google Scholar
13 McCormack, J. A., Fleurial, J.-P.. Materials Research Society Symposium Proceedings. 234, 135 (1991).Google Scholar
14 Wood, C., Zoltan, D., Stapfer, G.. Review of Scientific Instruments. 56, 719 (1985).Google Scholar
15 Fistul, V. I.. Heavily Doped Semiconductors. (Translated by Tybulewicz, A.), New York, New York, USA, (1969).Google Scholar
16 Cook, B. A., Harringa, J. L., Han, S. H. in CRC Handbook of Thermoelectrics. (Ed. Rowe, D. M.), Boca-Raton, Florida, USA, 124 (1995).Google Scholar
17 Cook, B. A., Beaudry, B. J., Harringa, J. L., Barnett, W. J.. Proceedings of the International Energy Conversion Engineering Conference. 693 (1989).Google Scholar
18 Dresselhaus, M. S., Chen, G., Tang, M. Y., Yang, R. G., Lee, H., Wang, D. Z., Ren, Z. F., Fleurial, J.-P., Gogna, P.. Adv. Mater. 19, 1043 (2007).Google Scholar
19 Dresselhaus, M. S., Chen, G., Ren, Z., Fleurial, J.-P., Gogna, P., Tang, M. Y., Vashaee, D., Lee, H., Wang, X., Joshi, G., Zhu, G., Wang, D., Blair, R., Bux, S., Kaner, R.. Proceedings of the 2007 Fall Materials Research Society Meeting on Thermoelectrics. 1044-U02-04 (2007).Google Scholar
20 Joshi, G., Lee, H., Lan, Y., Wang, X., Zhu, G., Wang, D., Gould, R. W., Cuff, D. C., Tang, M. Y., Dresselhaus, M. S., Chen, G., Ren, Z.. Nano Lett. 8, 12, 4670 (2008).Google Scholar
21 Wang, X. W., Lee, H., Lan, Y. C., Zhu, G. H., Joshi, G., Wang, D. Z., Yang, J., Muto, A. J., Tang, M. Y., Klatsy, J., Song, S., Dresselhaus, M. S., Chen, G., Ren, Z. F.. App. Phys. Lett. 93, 193121 (2008).Google Scholar
22 Bux, S., Blair, R., Gogna, P., Lee, H., Chen, G., Dresselhaus, M., Kaner, R., Fleurial, J.-P.. Adv. Funct. Mater. 19, 1 (2009).Google Scholar
23 Vining, C. B.. J. Appl. Phys. 69, 331, (1991).Google Scholar
24 Young, D. L., Branz, H. M., Liu, F., Reedy, R., To, B., Wang, Q.. J. Appl. Phys. 105, 033715 (2009).Google Scholar