Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T00:37:51.864Z Has data issue: false hasContentIssue false

High Temperature Stable Contacts for GaN HEMTs and LEDs

Published online by Cambridge University Press:  01 February 2011

S.J. Pearton
Affiliation:
spear@mse.ufl.edu, Univ.Florida, Materials Science, Gainesville, Florida, United States
L.F. Voss
Affiliation:
sjpearton@gmail.com, University of Florida, Materials Science, Gainesville, Florida, United States
R. Khanna
Affiliation:
rohit@gmail.com, University of Florida, Materials Science, Gainesville, Florida, United States
Wantae Lim
Affiliation:
University of Florida, Department of Materials Science and Engineering, Gainesville FL 32611, USA
L. Stafford
Affiliation:
lau@gamil.com, University of Florida, Materials Science, Gainesville, Florida, United States
F. Ren
Affiliation:
ren@che.ufl.edu, University of Florida, Chemical Engineering, Gainesville, Florida, United States
A. Dabiran
Affiliation:
amir@gmail.com, SVT, Eden Prairie, Minnesota, United States
A. Osinsky
Affiliation:
andrei@gmail.com, SVT, Eden Prairie, Minnesota, United States
Get access

Abstract

There is continued interest in developing more stable contacts to a variety of GaN-based devices. In this paper we give two examples of devices that show improved thermal stability when boride, nitride or Ir diffusion barriers are employed in Ohmic contact stacks. AlGaN/GaN High Electron Mobility Transistors (HEMTs) were fabricated with Ti/Al/X /Ti/Au source/ drain Ohmic (where X is TiB2, ZrN, TiN, TaN or Ir) contacts and subjected to long-term annealing at 350°C. For GaN layers with an electron concentration of ∼3×1017 cm-3, the minimum specific contact resistance achieved is 6×10-5 Ω cm2 for Ti/Al/TiN/Ti/Au after annealing at 800°C. The specific contact resistance was found to strongly depend on the doping level, suggesting that tunneling is the dominant mechanism of current flow. By comparison with companion devices with conventional Ti/Al/Ni/Au Ohmic contacts, the HEMTs with boride-based Ohmic metal showed superior stability of both source-drain current and transconductance after 25 days aging at 350°C. The gate current for standard HEMTs increases during aging and the standard Ohmic contacts eventually fail by shorting to the gate contact. Similarly, InGaN/GaN multiple quantum well light-emitting diodes (MQW-LEDs) were fabricated with either Ni/Au/TiB2/Ti/Au or Ni/Au/Ir/Au p-Ohmic contacts. Both of these contacts showed superior long-term thermal stability compared to LEDs with conventional Ni/Au contacts.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zhang, A.P., Rowland, L.B., Kaminsky, E.B., Kretchmer, J.W., Beaupre, R.A., Garrett, J.L., Tucker, J.B., Edward, B.J., Foppes, J. and Allen, A.F., Solid-State Electron. 47 pp. 821826, 2003.Google Scholar
2. Luther, B. P., Mohney, S. E., Jackson, T. N., Asif Khan, M., Chen, Q., and Yang, J. W., Appl. Phys. Lett. 70, pp. 5759, 1997.Google Scholar
3. Schweitz, K. O., Wang, P. K., Mohney, S. E., and Gotthold, D., Appl. Phys. Lett. 80, 19541956, 2002.Google Scholar
4. Miller, M. A. and Mohney, S. E., Appl. Phys. Lett. 91, 012103–1 to 012103-3, 2007.Google Scholar
5. Cole, M. W., Eckart, D. W., Han, W. Y., Pfeffer, R. L., Monahan, T., Ren, F., Yuan, C., Stall, R. A., Pearton, S. J., Li, Y. and Lu, Y., J. Appl. Phys. 80, 278281, 1996.Google Scholar
6. Selvanathan, D., Mohammed, F.M., Tesfayesus, A. and Adesida, I., J. Vac. Sci.Technol. B22 24092416, 2004.Google Scholar
7. Luo, B., Ren, F., Fitch, R.C., Gillespie, J.K., Jenkins, T., Sewell, J., Via, D., Crespo, A., Baca, A.G., Briggs, R.D., Gotthold, D., Birkhahn, R., Peres, B. and Pearton, S.J., Appl. Phys. Lett. 82, 39103914, 2003.Google Scholar
8. Fitch, R.C., Gillespie, J.K., Moser, N., Jenkins, T., Sewell, J., Via, D., Crespo, A., Dabiran, A.M., Chow, P.P., Osinsky, A., LaRoche, J.R., Ren, F. and Pearton, S.J., Appl.Phys.Lett. 84, 14951497, 2004.Google Scholar
9. Voss, L., Khanna, R., Pearton, S.J., Ren, F. and Kravchenko, I.I., Appl. Phys. Lett. 88, 012104–1 to 012104-3, 2006.Google Scholar
10. Khanna, R., Pearton, S. J., Ren, F., Kravchenko, I.I., Kao, C.J. and Chi, G.C., Appl. Phys. Lett. 87, 052110–1 to 052110-3, 2005.Google Scholar
11. Tarakji, A., Fatima, H., Hu, X., Zhang, J.P., Simin, G., Khan, M.A., Shur, M.S. and Gaska, R., IEEE Electron Dev. Lett. 24, 369371, 2003.Google Scholar
12. Readinger, E.D. and Mohney, S.E., J. Electron. Mater. 34, 375381, 2005.Google Scholar
13. Kumar, V., Selvanathan, D., Kuliev, A., Kim, S., Flynn, J. and Adesida, I., Electronics Lett. 39, 747748, 2003.Google Scholar
14. Readinger, E.D., Luther, B.P., Mohney, S.E. and Piner, E.L., J. Appl.Phys. 89, 79837987, 2001.Google Scholar
15. Ahmad, I., Kasisomayajula, V., Holtz, M., Berg, J. M., Kurtz, S. R., Tigges, C. P., Allerman, A. A., and Baca, A. G., Appl. Phys. Lett. 86, 173503–1 to 173503-3, 2005.Google Scholar
16. Khanna, R., Pearton, S.J., Ren, F. and Kravchenko, I.I., J. Vac. Sci. Technol. B 24, 744749, 2006.Google Scholar
17. Cao, X.A. and Arthur, S.D., Appl. Phys. Lett. 85, 39713973, 2004.Google Scholar
18. Cao, X.A., LeBoeuf, S.F., D'Evelyn, M.P., Arthur, S.D., Kretchmer, J., Yan, C.H., and Yang, Z.H., Appl. Phys. Lett. 84, 43134315, 2004.Google Scholar
19. Omiya, H., Ponce, F.A., Marui, H., Tanaka, S. and Mukai, T., Appl. Phys. Lett. 85, 61436145, 2004.Google Scholar
20. Wang, S. H., Mohney, S. E., and Birkhahn, R., J. Appl. Phys. 91, 37113716, 2002.Google Scholar
21. Khanna, R., Stafford, L., Voss, L. F., Pearton, S.J., Wang, H.T., Anderson, T., Hung, S.C. and Ren, F., IEEE Transactions on Device and Materials Reliability, 8, 272276, 2008.Google Scholar
22. Voss, L.F., Stafford, L., Khanna, R., Gila, B.P., Abernathy, C.R., Pearton, S.J., Ren, F. and Kravchenko, I.I., J. Electron. Mater. 36, 16621667, 2007.Google Scholar
23. Voss, L.F., Stafford, L., Wright, J.S., Pearton, S.J., Ren, F. and Kravchenko, I.I., Appl.Phys.Lett. 91, 042105 (2007).Google Scholar
24. Wang, H.-T., Anderson, T. J., Kang, B. S., Ren, F., Li, C., Low, Z.-N., Lin, J., Gila, B. P., Pearton, S. J., Osinsky, A. and Dabiran, A., Appl. Phys. Lett. 90, 252109, 2007.Google Scholar
25. Stafford, L., Voss, L. F., Pearton, S. J., Wang, H. T. and Ren, F., Appl.Phys.Lett. 90, 242103 (2007).Google Scholar
26. Voss, L. F., Stafford, L., Khanna, R., Gila, B. P., Abernathy, C. R., Pearton, S. J., Ren, F. and Kravchenko, I. I., Appl. Phys.Lett. 90, 212107 (2007)Google Scholar
27. Khanna, R., Gila, B.P., Stafford, L., Pearton, S.J., Ren, F. and Kravchenko, I.I., J. Electrochem. Soc. 154, H584 (2007).Google Scholar
28. Voss, L.F., Stafford, L., Thaler, G.T., Abernathy, C.R., Pearton, S.J., Chen, J.-J. and Ren, F., J. Electron. Mater. 36, 384 (2007)Google Scholar
29. Khanna, R., Stafford, L., Pearton, S.J., Anderson, T.J., Ren, F., Kravchenko, I.I., Dabiran, A., Osinsky, A., Lee, J. Y., Lee, K.-Y. and Kim, J., J. Electron. Mater. 36, 379 2007)Google Scholar