Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T13:16:03.713Z Has data issue: false hasContentIssue false

High Speed GaAs Based Devices on Si Substrates

Published online by Cambridge University Press:  25 February 2011

Hadis Morkoc*
Affiliation:
University of Illinois at Urbana-Champaign, Coordinated Science Laboratory, 1101 W. Springfield Avenue, Urbana, IL 61801
Get access

Abstract

Remarkably good device performance at both dc and microwave frequencies has recently been obtained from GaAs based devices grown on Si substrates. In GaAs MESFETs on Si, current gain cutoff frequencies and maximum oscillation frequencies of fT = 13.3 GHz and fmax = 30 GHz have been obtained for 1.2μm devices, which is nearly identical to the performance achieved in GaAs on GaAs technology for both direct implant and epitaxial technology. For heterojunction bipolar transistors, current gain cutoff frequencies and maximum oscillation frequencies of fT = 30 GHz and fmax = 11.3 GHz have been obtained for emitter dimensions of 4×20μm2. In GaAs AlGaAs MODFETs. current gain cut-off frequencies of about 15 GHz with lμm gates were obtained on GaAs and Si substrates. The pseudomorphic InGaAs/GaAs MODFETs were also fabricated and found to be comparable to GaAs MODFETs although they should perform better. The structures were also shown to maintain their properties when put through ion implantation and annealing process. Given the performance already demonstrated in GaAs on Si devices and the advantages afforded by this technology, the growth of III-Vs on Si promises to play an important role in the future of heterojunction electronics.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fischer, R., Henderson, T., Klein, J., Masselink, W.T., Kopp, W., Morkoc, H. and Litton, C.W., Electronics Letters. 20, pp. 945947 (1984).CrossRefGoogle Scholar
2. Metze, G.M., Choi, H.K. and Tsaur, B.-Y., Appl. Phys. Lett., 45, 11071109, 1984).CrossRefGoogle Scholar
3. Uppal, P.N. and Kroemer, H., J. Appl. Phys., 58, 21952203, (1985).CrossRefGoogle Scholar
4. Nonaka, T., Akiyama, M., Kawarada, Y. and Kaminski, K., Jap. J. Appl. Phys., 23, L919– L921, (1984).Google Scholar
5. Fischer, R., Masselink, W.T., Klem, J., Henderson, T., McGlinn, T.C., Klein, M.V., Morkoc, H., Mazur, J. and Washburn, J., J. Appl. Phys., 58, 374381, (1985).Google Scholar
6. Fischer, R., Chand, N., Kopp, W., Morkoc, H., Erickson, L.P. and Youngman, R., Appl. Phys. Lett. 47, 397399 (1985).Google Scholar
7. Neumann, D.A., Zhu, X., Zabel, H., Henderson, T., Fischer, R., Masselink, W.T., Klem, J., Peng, C.K. and Morkoc, H.. presented at the 6th MBE Workshop; to appear in J. Vacuum Sci. and Technol. B.Google Scholar
8. Otsuka, N., Choi, C., Fischer, R. and Morkoc, H., unpublished Results.Google Scholar
9. Fischer, R., Neuman, D., Zabel, H., Morkoc, H., Choi, C. and Otsuka, N., Appl. Phys. Lett., in print.Google Scholar
10. Fischer, R., Chand, N., Kopp, W., Peng, C.K., Morkoc, H., Gleason, K.R. and Scheitlin, D., IEEE Trans. Electron Dev., ED–33, 206213, (1986).Google Scholar
11. Fischer, R., Kopp, W., Gedymin, J.S. and Morkoc, H., IEEE Trans. Electron Dev., submitted.Google Scholar
12. Fischer, R., Klem, J., Gedymin, J.S., Henderson, T., Kopp, W. and Morkoc, H., lEDM Tech. Digest. 332–335, (1985).Google Scholar
13. Fischer, R., Klem, J., Peng, C.K., Gedymin, J.S. and Morkoc, H., IEEE Electron Dev. Letters, EDL–7, 112118, (1986).Google Scholar
14. Fischer, R., Henderson, T., Klem, J., Kopp, W., Peng, C.K. and Morkoc, H., Appl. Phys. Lett., 47 983–952, (1985).Google Scholar