Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T14:59:24.891Z Has data issue: false hasContentIssue false

High Resolution Position Monitoring of Suspended MEMS towards Biological and Chemical Sensors

Published online by Cambridge University Press:  22 January 2014

G. Putrino
Affiliation:
School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
M. Martyniuk
Affiliation:
School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
A. Keating
Affiliation:
School of Mechanical and Chemical Engineering, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
J.M. Dell
Affiliation:
School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
L. Faraone
Affiliation:
School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
Get access

Abstract

We present an integrated readout technique for interrogating the suspension height of micro-electro-mechanical systems (MEMS) structures. This readout technique is envisaged to be useful in applications such as MEMS-based biological and chemical sensing, where it is necessary to obtain the accurate position of a MEMS beam. The approach is based on the suspended MEMS structure modulating light transmission in an underlying optical waveguide via Fabry-Perrot phenomena. The performance of the technique is predicted via finite difference time domain (FDTD) simulations the results of which are confirmed by experimental measurements.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lavrik, N., Sepaniak, M., and Datskos, P., “Cantilever transducers as a platform for chemical and biological sensors,” Rev. Sci. Instrum. 75, 22292253 (2004).CrossRefGoogle Scholar
Loui, A., Ratto, T. V., Wilson, T. S., McCall, S. K., Mukerjee, E.V., Love, A. H., and Hart, B. R., “Chemical vapor discrimination using a compact and low-power array of piezoresistive microcantilevers,” The Analyst, vol. 133, no. 5, p. 608, 2008.CrossRefGoogle ScholarPubMed
Baller, M., Lang, H., Fritz, J., Gerber, C., Gimzewski, J., Drechsler, U., Rothuizen, H., Despont, M., Vettiger, P., Battiston, F., Ramseyer, J., Fornaro, P., Meyer, E., and Guntherodt, H., “A cantilever array-based artificial nose,” Ultramicroscopy 82, 19 (2000).CrossRefGoogle ScholarPubMed
Yang, Y. T., Callegari, C., Feng, X. L., Ekinci, K. L., andRoukes, M. L., “Zeptogram-Scale nanomechanical mass sensing,” Nano Lett., vol. 6, no. 4, pp. 583586, Apr. 2006.CrossRefGoogle ScholarPubMed
Li, M., Tang, H. X., and Roukes, M. L., “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nature Nanotechnol., vol. 2, no. 2, pp. 114120, Jan. 2007.CrossRefGoogle ScholarPubMed
Stievater, T. H., Rabinovich, W. S., Ferraro, M. S., Papanicolaou, N. A., Boos, J. B., McGill, R. A., Stepnowski, J. L., and Houser, E. J., “Erratum: All-optical micromechanical chemical sensors [Appl. phys. lett. 89, 091125 (2006)],” Appl. Phys. Lett., vol. 89, no. 26, p. 269902, 2006.CrossRefGoogle Scholar
Kong, D., Mei, T., Tao, Y., Ni, L., Zhang, T., Lu, W., Zhang, Z., and Wang, R., “A MEMS sensor array for explosive particle detection,” in Proc. Int. Conf. Inf. Acquisition, 2004, p. 278281.Google Scholar
Fukuma, T., Kimura, M., Kobayashi, K., Matsushige, K., and Yamada, H., “Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy,” Revi. Sci. Instrum., vol. 76, no. 5, p. 053704, 2005.CrossRefGoogle Scholar
Lang, H. P., Baller, M. K., Berger, R., Gerber, C., Gimzewski, J. K., Battiston, F.M., Fornaro, P., Ramseyer, J. P., Meyer, E., and Gntherodt, H. J., “An artificial nose based on a micromechanical cantilever array,” Analytica Chimica Acta, vol. 393, no. 1–3, pp. 5965, Jun. 1999.CrossRefGoogle Scholar
Schonenberger, C. and Alvarado, S. F., “A differential interferometer for force microscopy,” Revi. Sci. Instrum., vol. 60, no. 10, p. 31313134, 1989.Google Scholar
Zinoviev, K., Dominguez, C., Plaza, J. A., Busto, V. J. C., and Lechuga, L. M., “A novel optical waveguide microcantilever sensor for the detection of nanomechanical forces,” J. Lightw. Technol., 24, p. 2132, May 2006.CrossRefGoogle Scholar
Noh, J. W., Anderson, R., Kim, S., Cardenas, J., and Nordin, G. P., “Inplane photonic transduction of silicon-on-insulator microcantilevers,” Opt. Exp., vol. 16, no. 16, pp. 12 114–12 123, 2008.CrossRefGoogle Scholar
Stievater, T. H., Rabinovich, W. S., Ferraro, M. S., Papanicolaou, N. A., Bass, R., Boos, J. B., Stepnowski, J. L., and McGill, R. A., “Photonic microharp chemical sensors,” Opt. Exp., vol. 16, no. 4, pp. 24232430, Feb. 2008.CrossRefGoogle ScholarPubMed
Taillaert, D., Van Laere, F., Ayre, M., Bogaerts, W., Van Thourhout, D., Bienstman, P., and Baets, R., “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys., vol. 45, no. 8A, pp. 60716077, Aug. 2006.CrossRefGoogle Scholar
Oskooi, A. F., Roundy, D., Ibanescu, M., Bermel, P., Joannopoulos, J., andJohnson, S. G., “Meep:Aflexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun., vol. 181, no. 3, pp. 687702, Mar. 2010.CrossRefGoogle Scholar
Martyniuk, M., Antoszewski, J., Musca, C. A., Dell, J. M., and Faraone, L., “Stress in low-temperature plasma enhanced chemical vapour deposited silicon nitride thin films,” Smart Materials and Structures, vol. 15, no. 1, pp. S29S38, Feb. 2006.CrossRefGoogle Scholar