Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T14:08:54.570Z Has data issue: false hasContentIssue false

High Resolution Laser Diagnostics for Direct Gap Semiconductor Materials

Published online by Cambridge University Press:  15 February 2011

R.P. Salathe
Affiliation:
Institute of Applied Physics, University of Berne, Sidlerstr. 5, 3012 Berne, Switzerland
H.H. Gilgen
Affiliation:
Institute of Applied Physics, University of Berne, Sidlerstr. 5, 3012 Berne, Switzerland
Get access

Abstract

The laser-induced luminescence of direct gap semiconductors can be measured with high spatial (1 μm) and temporal (< 1 ns) resolution. A profiling technique is described for in-situ measurements during laser processing. It allows the evaluation of temperature, carrier density and band gap energy within the focal zone. The technique has been applied to (Al,Ga)As heterostructure material subjected to highly focused cw-Kr-ion laser radiation. The measurements reveal low temperature rises (<200 deg.C) at high excitation densities (>1kw/cm2) and an inhomogeneous distribution of optically excited carriers for concentrations above 2.1017 cm−3.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Johnston, W.D. and Logan, R.A., Appl. Phys. Lett. 28(3), 140 (1976)Google Scholar
[2] Henry, C.H. and Logan, R.A., J. Appl. Phys. 48(9), 3962 (1977)Google Scholar
[3] Petroff, P.M., Lang, D.V., Strudel, J.L., and Logan, R.A., in “Scanning Electron Microscopy” (SEM Inc. AMF, O'Mare, IL, 1978), Vol. 1, p. 235 Google Scholar
[4] see, e.g., Williams, E.W. and Bebb, H.B., in “Semiconductors and Semimetals”, edited by Willardson, R.K. and Beer, A.C. (Academic Press, New York, 1972) Vol. 8, Chap. 5Google Scholar
[5] Wood, R.F. and Giles, G.E., Phys. Rev., B 23, 2923 (1981)Google Scholar
[6] Kirillov, D. and llerz, J.L., paper 13.2, this conferenceGoogle Scholar
[7] Logan, R.A. and Reinhart, F.K., J. Appl. Phys., Vol. 44, pp. 41724176, 1973 Google Scholar
[8] See, e.g., Sekala, A.M., Feucht, D.L., and Milnes, A.G., in GaAs and Related Compounds, 1976, London: Institute of Physics Conf. Series no. 33a, 1977, p. 245Google Scholar
[9] Afromowitz, M.A., J. Appl. Phys., Vol. 44, pp. 12921294, 1973 CrossRefGoogle Scholar
[10] Mooradian, A. and Fan, H.Y., Phys. Rev. 148, 873 (1966)CrossRefGoogle Scholar
[11] Chandra, A. and Eastman, L.F., J. Appl. Phys. 51, 2669, 1980 Google Scholar
[12] Zukotynski, S., Sumski, S., Panish, M.B., and Casey, H.C. Jr., J. Appl. Phys. 50, 5795 (1979)Google Scholar
[13] Shank, C.V., Fork, R.L., Leheny, R.F., and Shah, J., Phys. Rev. Lett 42, 112, 1979 Google Scholar
[14] Lax, M., J. Appl. Phys. 48, 3919, 1977 Google Scholar
[15] To be publishedGoogle Scholar
[16] Varshini, Y.P., Physica (Utrecht) 34, 149 (1967)Google Scholar
[17] Hildebrand, O., Goebel, E.O., Romanek, K.M., Weber, H., and Mahler, G., Phys. Rev. B17, 4775 (1978)Google Scholar
[18] Shah, J., Leheny, R.F., and Wiegmann, W., Phys. Rev. B16, 1577 (1977)Google Scholar
[19] Lee, H.J., Juravel, L.Y., and Wolley, J.C., Phys. Rev. B21, 659 (1981)Google Scholar
[20] Gilgen, H.H., Salathé, R.P., and Rytz–Froidevaux, Y., Appl. Phys. Lett. 38, 241 (1981)CrossRefGoogle Scholar
[21] Salathé, R.P., Gilgen, H.H., and Rytz–Froidevaux, Y., IEEE J. Quant. Electron, QE–17, 1989 (1981)CrossRefGoogle Scholar
[22] Zysset, B., Salathé, R.P., and Gilgen, H.H. To be publ. Appl. Phys. Lett.42, Jan 83Google Scholar
[23] Salathé, R.P., Gilgen, H.H., and Zysset, B., in Proc. of the 12thInt. Conf. on Defects in Semiconductor, Amsterdam 1982 to be publ. in Physica B, North Holland 1982Google Scholar
[24] Van Vechten, J.A..Google Scholar