No CrossRef data available.
Published online by Cambridge University Press: 31 January 2011
We have examined effects of gas velocity and gas pressure on a deposition rate of hydrogenated amorphous silicon (a-Si:H) films and on a volume fraction of clusters in the films using a multi-hollow discharge plasma CVD method. The maximum deposition rate realized for each pressure exponentially increases with decreasing the pressure from 1.0 Torr to 0.1 Torr, whereas the volume fraction of clusters very slightly increases with increasing the deposition rate. Based on the results, we have succeeded in depositing highly stable a-Si:H films of 4.9×1015cm-3 in a stabilized defect density at a rate of 3.0nm/s using the method.