Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T00:03:38.918Z Has data issue: false hasContentIssue false

High Performance IGZO TFTs with Modified Etch Stop Structure on Glass Substrates

Published online by Cambridge University Press:  13 February 2014

Forough Mahmoudabadi
Affiliation:
Display Research Laboratory, Lehigh University, Bethlehem, PA 18015, USA
Ta-Ko Chuang
Affiliation:
Corning Incorporated, Corning, NY 14831, USA
Jerry Ho Kung
Affiliation:
Department of Electro Optical Engineering, National United University, Miaoli 36003, Taiwan
Miltiadis K. Hatalis
Affiliation:
Display Research Laboratory, Lehigh University, Bethlehem, PA 18015, USA
Get access

Abstract

In this paper, we present fabrication and characterization of RF sputtered a-IGZO TFTs having a modified etch stopper structure with source/drain contact windows on glass wafers. The effect of annealing time and channel length on device performance in terms of mobility, on/off current ratio, average off current, threshold voltage, and sub threshold slope is reported.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Nomura, K., et al. . Nature 432, no. 7016 (2004).CrossRefGoogle Scholar
Lim, W., et al. . Journal of The Electrochemical Society 155, no. 6 (2008).Google Scholar
Park, J. S., et al. . Thin Solid Films 520, no. 6 (2012)Google Scholar
Hosono, H., et al. . Journal of non-crystalline solids 354, no. 19 (2008).Google Scholar
Laux, S. E.. Electron Devices, IEEE Transactions on 31, no. 9 (1984).CrossRefGoogle Scholar
Lan, L., Xu, M., Peng, J., Xu, H., Li, M., Luo, D., Zou, J., Tao, H., Wang, L., and Yao, R.. Journal of Applied Physics 110, no. 10 (2011).Google Scholar
Park, J. S., Kim, T. S., Son, K. S., Lee, E., Jung, J. S., Lee, K. H., Maeng, W. J. et al. . Applied Physics Letters 97, no. 16 (2010).Google Scholar
Yao, J., Xu, N., Deng, S., Chen, J., She, J., Shieh, H. D., Liu, Po-Tsun, and Huang, Yi-Pai. Electron Devices, IEEE Transactions on 58, no. 4 (2011).Google Scholar
Kang, D., et al. . Applied physics letters 90, no. 19 (2007).Google Scholar
Honda, S., et al. . Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 13, no. 3 (1995).CrossRefGoogle Scholar
Choi, S. H., Jung, W. S., and Park, J. H.. Applied Physics Letters 101 (2012).Google Scholar
Choi, K. H., and Kim, H. K.. Applied Physics Letters 102, no. 5 (2013).Google Scholar
Park, K., et al. . Journal of Materials Research 25, no. 02 (2010).Google Scholar
Arai, T., et al. . SID Symposium Digest of Technical Papers, vol. 41, no. 1, pp. 10331036. Blackwell Publishing Ltd, 2010.Google Scholar
Yim, J. R., et al. . Japanese Journal of Applied Physics 51, no. 1R (2012)CrossRefGoogle Scholar
Stull, D. R. and Prophet, H.. JANAF thermochemical tables. no. NSRDS-NBS-37. National Standard Reference Data System, 1971.CrossRefGoogle Scholar
Barin, I., et al. . Thermochemical properties of inorganic substances: supplement. Vol. 380. Berlin: Springer-Verlag, 1977.CrossRefGoogle Scholar
Mahmoudabadi, F., et al. . (Unpublished).Google Scholar