Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T00:00:52.005Z Has data issue: false hasContentIssue false

High mobile electron gas at LaAlO3/SrTiO3 heterointerface

Published online by Cambridge University Press:  16 February 2012

Shanshan Su
Affiliation:
Department of Mechanical Engineering, Southern Methodist University, Dallas TX
Jeong Ho You
Affiliation:
Department of Mechanical Engineering, Southern Methodist University, Dallas TX
Get access

Abstract

We calculated the mobility of two-dimensional electron gas along an n-type interface in LaAlO3/SrTiO3 heterostructure using the linearized Boltzmann equation. By solving the Schrödinger equation with the Poisson equation self-consistently, it was found that the interface remained non-conducting up to four unit cells of LaAlO3 film. For five or higher unit cells, the interface became conducting due to the significant overlap between the SrTiO3 conduction band and the LaAlO3 valence band. The electron gas was localized within 7 nm from the interface and multi-subbands were occupied. The calculated mobility matches reasonably well with available experimental data. It was found that the mobility is limited by the remote ionic charged layers in LaAlO3 at low temperature. At high temperature, the polar optical phonon was found to be the dominant scattering center.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ohtomo, A. and Hwang, H. Y., Nature 427, 423 (2004).Google Scholar
2. Thiel, S., Hammerl, G., Schmehl, A., Schneider, C. and Mannhart, J., Science 313, 1942 (2006).Google Scholar
3. Huijben, M., Rijnders, G., Blank, D., Bals, S., Van Aert, S., Verbeeck, J., Van Tendeloo, G., Brinkman, A. and Hilgenkamp, H., Nature Mater. 5, 556 (2006).Google Scholar
4. Pentcheva, R., Huijben, M., Otte, K., Pickett, W., Kleibeuker, J., Huijben, J., Boschker, H., Kockmann, D., Siemons, W., Koster, G., Zandvliet, H., Rijnders, G., Blank, D., Hilgenkamp, H. and Brinkman, A., Phys. Rev. Lett. 104, 166804 (2010).Google Scholar
5. Lee, J. and Demkov, A. A., Phys. Rev. B 78, 193104 (2008).Google Scholar
6. Pentcheva, R. and Pickett, W. E., Phys. Rev. Lett. 102, 107602 (2009).Google Scholar
7. Chang, Y. C., Zhang, Y. M., Zhang, Y. M. and Tong, K. Y., J. Appl. Phys. 99, 044501 (2006).Google Scholar
8. Zhang, Y., Fischetti, M. V., Soree, B., Magnus, W., Heyns, M. and Meuris, M., J. Appl. Phys. 106, 083704 (2009).Google Scholar
9. Zhang, L. X. and Wei, S. H., Solid State Commun. 151, 21 (2011).Google Scholar
10. Li, H., Si, W., Wang, R., Xuan, Y., Liu, B. and Xi, X., Mater. Sci. Eng. B 56, 218 (1998).Google Scholar
11. Pentcheva, R. and Pickett, W. E., Phys. Rev. B 78, 205106 (2008).Google Scholar
12. You, J-H- and Johnson, H. T., Phys. Rev. B 76, 115336 (2007); J-H- You and H. T. Johnson, J. Appl. Phys. 101, 023516(2007).Google Scholar
13. Popović, Z. S., Satpathy, S. and Martin, R. M., Phys. Rev. Lett. 101, 256801(2008).Google Scholar
14. Basletic, M., Maurice, J. L., Carretero, C., Herranz, G., Copie, O., Bibes, M., Jacquet, E., Bouzehouane, K., Fusil, S. and Barthelemy, A., Nature Mater. 7, 621 (2007).Google Scholar
15. Fischetti, M. V., J. Appl. Phys. 89, 1232 (2001).Google Scholar
16. Langreth, D. C., Phys. Rev. 137, A760 (1965); E. Gross, Phys. Rev. B 34, 5003(1986).Google Scholar
17. Low, F. E. and Pines, D., Phys. Rev. 98, 414 (1955); V. Kravets, Phys. Rev. B 72, 064303(2005).Google Scholar
18. Barker, A. S., Phys. Rev. 145, 391 (1966); H.Yasuda and Y.Kanemitsu, Phys. Rev. B 77, 193202(2008).Google Scholar
19. Davies, J. H., The Physics of Low-dimensional Semiconductors: An Introduction. (Cambridge University Press, 1997) pp. 356-357.Google Scholar
20. Park, J. W., Bogorin, D. F., Cen, C., Felker, D. A., Zhang, Y., Nelson, C. T., Bark, C. W., Folkman, C. M., Pan, X. Q., Rzchowski, M. S., Levy, J. and Eom, C. B., Nat. Commun. 1, 1 (2010).Google Scholar
21. Dubroka, A., Rossle, M., Kim, K. W., Malik, V. K., Schultz, L., Thiel, S., Schneider, C. W., Mannhart, J., Herranz, G., Copie, O., Bibes, M., Barthelemy, A. and Bernhard, C., Phys. Rev. Lett. 104, 156807 (2010).Google Scholar
22. Siemons, W., Koster, G., Yamamoto, H., Harrison, W. A., Lucovsky, G., Geballe, T. H., Blank, D. H. A. and Beasley, M. R., Phys. Rev. Lett. 98, 196802 (2007).Google Scholar