Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T11:49:51.501Z Has data issue: false hasContentIssue false

High Energy X-ray Diffraction Measurement of Load Transfer between Hydroxyapatite and Collagen in Bovine Dentin

Published online by Cambridge University Press:  31 January 2011

Alix C. Deymier
Affiliation:
AlixDeymier2010@u.northwestern.edu, Northwestern University, Materials Science and Engineering, Evanston, Illinois, United States
Jonathan D. Almer
Affiliation:
almer@aps.anl.gov, Argonne National Laboratory, Advanced Photon Source, Argonne, Illinois, United States
Stuart R. Stock
Affiliation:
s-stock@northwestern.edu, Northwestern University, Molecular Pharmacology and Biological Chemistry, Chicago, Illinois, United States
Dean R. Haeffner
Affiliation:
haeffner@aps.anl.gov, Argonne National Laboratory, Advanced Photon Source, Argonne, Illinois, United States
David C. Dunand
Affiliation:
dunand@northwestern.edu, Northwestern University, Materials Science and Engineering, Evanston, Illinois, United States
Get access

Abstract

Dentin is a load bearing multiphase composite composed of a ceramic phase, hydroxyapatite (HAP), a polymeric phase, collagen, and fluid filled porosity. In order to create better dentin replacements it is important to understand how applied load is naturally transferred between the phases during chewing and other stresses. To determine the apparent elastic modulus of HAP in dentin, applied stress over lattice strain in HAP, high energy wide angle x-ray diffraction measurements were performed on in situ loaded bovine dentin samples. It was determined that the average longitudinal apparent elastic modulus of HAP in dentin was 18.3±2.19GPa. This value is much lower than values predicted by the Voigt model when combined with volume fractions determined for the sample by thermo-gravimetric and chemical analysis. It has been determined that the decrease in apparent elastic modulus is most likely due to a decrease in the “bulk” elastic modulus of HAP due to nanometric effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Avery, J.K., Oral development and histology. (Theime Medical Publishers, New Yourk, NY, 1994).Google Scholar
2 Cate, A.R. Ten, Oral Histology: development, strucutre and function. (Mosby, St Louis, MI, 1980).Google Scholar
3(General Electric, Waukesha, WI, USA).Google Scholar
4 Young, M. L., DeFouw, J., Almer, J. D. et al., Acta Materialia 55 (10), 3467 (2007).10.1016/j.actamat.2007.01.046Google Scholar
5 Young, M. L., Almer, J. D., Lienert, U. et al., Affordable Metal Matrix Composites for High6Performance Applications Ii, 225 (2003).Google Scholar
6 Hammersley, A P, FIT2D V9.129 Reference Manual V3.1 (ESRF Internal Report, 1998).Google Scholar
7MATLAB (Available at: www.mathworks.com).Google Scholar
8 Almer, J.D. and Stock, S.R., Journal of Structural Biology 152, 14 (2005).10.1016/j.jsb.2005.08.003Google Scholar
9 Almer, J.D. and Stock, S.R., Journal of Structural Biology 157, 365 (2007).10.1016/j.jsb.2006.09.001Google Scholar
10 Craig, R.G. and Peyton, F.A., Journal of Dental Research 37 (4), 710 (1958).10.1177/00220345580370041801Google Scholar
11 Sano, H., Ciucchi, B., Matthews, W.G. et al., Journal of Dental Research 73 (6), 1205 (1994).10.1177/00220345940730061201Google Scholar
12 Akhtar, R., Daymond, M.R., Almer, J.D. et al., Acta Biomaterialia 4, 1677 (2008).10.1016/j.actbio.2008.05.008Google Scholar
13 Gilmore, R. S. and Katz, J. L., Journal of Materials Science 17 (4), 1131 (1982).10.1007/BF00543533Google Scholar
14 Jager, I. and Fratzl, P., Biophysical Journal 79 (4), 1737 (2000).10.1016/S0006-3495(00)76426-5Google Scholar
15 Rey, C., Combes, C., Drouet, C. et al., Materials Science and Engineering C 27, 198 (2007).10.1016/j.msec.2006.05.015Google Scholar
16 Weiner, S., Bone 39 (3), 431 (2006).10.1016/j.bone.2006.02.058Google Scholar
17 Arias, J. L., Mayor, M. B., Pou, J. et al., Biomaterials 24 (20), 3403 (2003).10.1016/S0142-9612(03)00202-3Google Scholar
18 Zhang, C., Leng, Y., and Chen, J., Biomaterials 22, 1357 (2001).10.1016/S0142-9612(00)00289-1Google Scholar
19 Leventouri, Th., Biomaterials 27, 3339 (2006).10.1016/j.biomaterials.2006.02.021Google Scholar
20 Schiotz, J., Tolla, F.D. Di, and Jacobsen, K.W., Nature 391, 561 (1998).10.1038/35328Google Scholar
21 Villain, P., Beauchamp, P., Badawi, K.F. et al., Scripta Materialia 50, 1247 (2004).10.1016/j.scriptamat.2004.01.033Google Scholar
22 Chudoba, T., Griepentrog, M., Duck, A. et al., Journal of Materials Research 19 (1), 301 (2004).10.1557/jmr.2004.19.1.301Google Scholar
23 Sun, C.T. and Zhang, H., Journal of Applied Physics 93 (2), 1212 (2003).10.1063/1.1530365Google Scholar
24 Chen, C.Q., Shi, Y., Zhang, Y.S. et al., Physical Review Letters 96, 75505 (2006).10.1103/PhysRevLett.96.075505Google Scholar
25 Teraoka, K., Maekawa, K., Onuma, K. et al., Journal of Dental Research 77 (7), 1560 (1998).10.1177/00220345980770071201Google Scholar