Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T23:46:37.061Z Has data issue: false hasContentIssue false

High Electromechanical Coupling Piezoelectrics - How High Energy Conversion Rate is Possible

Published online by Cambridge University Press:  10 February 2011

Kenji Uchino*
Affiliation:
International Center for Actuators and Transducers, Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802
Get access

Abstract

A new category of piezoelectric ceramics with very high electromechanical coupling was discovered in a lead zinc niobate:lead titanate solid solution in a single crystal form. The maximum coupling factor k33 reaches 95%, which corresponds to the energy conversion rate twice as high as the conventional lead zirconate titanate ceramics. This paper reviews the previous studies on superior piezoelectricity in relaxor ferroelectric: lead titanate solid solutions and on the possible mechanisms of this high electromechanical coupling.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Uchino, K., Proc. 4th In'l Conf. on Electronic Ceramics & Appl. Vol. 1, p. 179, Aachen, Germany, Sept. 5–7 (1994).Google Scholar
2. Uchino, K., Piezoelectric Actuators and Ultrasonic Motors. Kluwer Academic Publ., Boston (1996).Google Scholar
3. Kuwata, J., Uchino, K. and Nomura, S., Ferroelectrics 37, 579 (1981).Google Scholar
4. Hellwege, K. H. et al.: Landolt - Bornstein, Group III, Vol. 11, Springer-Verlag, N.Y. (1979).Google Scholar
5. Uchino, K. and Nomura, S., Jpn. J. Appl. Phys. 18, 1493 (1979).Google Scholar
6. Uchino, K., Bull. Amer. Ceram. Soc. 65 (4), 647 (1986).Google Scholar
7. Nomura, S., Takahashi, T. and Yokomizo, Y., J. Phys. Soc, Jpn. 22, 262 (1969).Google Scholar
8. Kuwata, J., Uchino, K. and Nomura, S., Jpn. J. Appl. Phys. 21 (9), 1298 (1982).Google Scholar
9. Jaffe, B., Roth, R. S. and Marzullo, S., Res, J.. Nat'l. Bur. Stand. 55, 239 (1955).Google Scholar
10. Igarashi, H., Mem. Nat'l. Def. Adad. 22, 27 (1982).Google Scholar
11. Choi, S. W., Shrout, T. R., Jang, S. J. and Bhalla, A. S., Ferroelectrics 100 29 (1989).Google Scholar
12. Shrout, T. R., Chang, Z. P., Kim, N. and Markgraf, S., Ferroelectrics Lett. 12, 63 (1990).Google Scholar
13. Wang, J. F., Giniewicz, J. R. and Bhalla, A. S., Ferroelectics Lett. 16, 113 (1993).Google Scholar
14. Yamashita, Y., Jpn. J. Appl. Phys. 33, 4652 (1994).Google Scholar
15. Shrout, T. R., ONR Transducer Workshop, State College (March, 1996)Google Scholar
16. Mulvihill, M. L., Cross, L. E. and Uchino, K., J. Amer. Ceram. Soc. 78, 3345 (1996).Google Scholar
17. Kato, K., Suzuki, K. and Uchino, K., J. Jpn. Ceram. Soc. 98, (8), 840 (1990).Google Scholar
18. Ujiie, R. and Uchino, K., Proc. IEEE Ultrasonic Symp. ′90, Hawaii, 2, 725 (1991).Google Scholar
19. Mulvihill, M. L., Cross, L. E. and Uchino, K., Proc. 8th Europian Mtg. on Ferroelectrics, Ferroelectrics 186 325 (1996).Google Scholar