Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T13:14:30.059Z Has data issue: false hasContentIssue false

High Density Hexagonal Nickel Nanowire Arrays with 65 and 100 nm-PERIOD

Published online by Cambridge University Press:  15 March 2011

Kornelius Nielsch
Affiliation:
Max-Planck-Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
Ralf B. Wehrspohn
Affiliation:
Max-Planck-Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
Saskia F. Fischer
Affiliation:
Department of Electronic Materials, Ruhr-Universität-Bochum, Lehrstuhl für Werkstoffe der Elektrotechnik, 44780, Bochum
Helmut Kronmüller
Affiliation:
Max-Planck- Institute of Metal Research, Heisenbergstr. 1, 70569, Stuttgart
Jochen Barthel
Affiliation:
Max-Planck-Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
Jürgen Kirschner
Affiliation:
Max-Planck-Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
Thomas Schweinböck
Affiliation:
Thomas Schweinböck und Dieter Weiss, Institute of Applied Physics, University of Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
Dieter Weiss
Affiliation:
Thomas Schweinböck und Dieter Weiss, Institute of Applied Physics, University of Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
Ulrich Gösele
Affiliation:
Max-Planck-Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
Get access

Abstract

Highly ordered alumina pore channel arrays are used as templates for the fabrication of magnetic nanowire arrays. These well-defined templates are based on the approach by Masuda and Fukuda and have an interpore distance of 65 and 100 nm and a monodisperse pore diameter of ≍30 nm. The pore channels are hexagonally arranged in 2D-domains, which extend over more than ten interpore distances. Nearly 100% metal filling of the alumina pore structures is obtained by a novel pulsed electrodeposition technique. Due to the high ordering degree of the nanowires arrays, we detect a squareness of ≍100% and coercive fields of 1200 Oe in the direction of the nanowires. The MFM measurements have been carried out by applying magnetic fields on magnetized and demagnetized samples to study the switching behavior of individual nanowires inside the arrays. Magnetic wires have been locally switched by a strong MFM tip and a variable external magnetic field. The MFM results show a good agreement with the bulk magnetic hysteresis loops.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Chou, S.Y., Wei, M.S., Krauss, P.R., and Fischer, P.B., J. Appl. Phys. 76, 6673 (1994).Google Scholar
[2] Ross, C.A., Smith, H.I., Savas, T.A., Schattenberg, M., Farhoud, M., Hwang, M., Walsh, M., Abraham, M.C., and Ram, R.J., J. Vac. Sci. Technol. B17, 3168 (1999).Google Scholar
[3] Thurn-Albrecht, T., Schotter, J., Kastle, C.A., Emley, N., Shibauchi, T., Krusin-Elbaum, L., Guarini, K., Black, C.T., Tuominen, M.T., and Russell, T.P., Science 290, 2126 (2000).Google Scholar
[4] Zenger, M., Breuer, W., Zölfl, M., Pulwey, R., Raabe, J., and Weiss, D., IEEE Trans. Magn. 37, 2094 (2001).Google Scholar
[5] Kawai, S. and Ueda, R., J. Electrochem. Soc. 122, 32 (1975).Google Scholar
[6] Schmidt, H., Appl Organomet. Chem. 15, 331 (2001).Google Scholar
[7] AlMawlawi, D., Coombs, N., and Moskovits, M., J. Appl. Phys. 69, 5150 (1991).Google Scholar
[8] Sellmyer, D.J., Zheng, M., and Skomski, R., J Phys. Condens. Mat 13, R433 (2001).Google Scholar
[9] Nielsch, K., Wehrspohn, R. B., Barthel, J., Kirschner, J., Gösele, U., Fischer, S. F., and Kronmüller, H., Appl. Phys. Lett. 79, 1360 (2001).Google Scholar
[10] Masuda, H. and Fukuda, K., Science 268, 1466 (1995).Google Scholar
[11] Jessensky, O., Müller, F., and Gösele, U., Appl. Phys. Lett. 72, 1173 (1998).Google Scholar
[12] Li, A.P., Müller, F., Birner, A., Nielsch, K., and Gösele, U., J. Appl. Phys. 84, 6023 (1999).Google Scholar
[13] Nielsch, K., Müller, F., Li, A. P., and Gösele, U., Adv. Mater. 12, 582 (2000).Google Scholar
[14] Sauer, G., Brehm, G., Schneider, S., Nielsch, K., Wehrsphohn, R.B., Müller, F. and Gösele, U., J. Appl. Phys. 91, 3243 (2002).Google Scholar
[15] Nielsch, K., Wehrspohn, R.B., Barthel, J., Kirschner, J., Fischer, S.F., Kronmüller, H., Schweinböck, T., Weiss, D., and Gösele, U., J. Magn. Magn. Mater., in press (April 2002).Google Scholar
[16] Hertel, R., J. Appl. Phys. 90, 5752 (2001).Google Scholar
[17] Hertel, R., J. Magn. Magn. Mater., in press (April 2002).Google Scholar