Published online by Cambridge University Press: 10 February 2011
Amorphous silicon based thin film transistor liquid crystal displays (TFT/LCD) have become the dominant technology used for flat panel displays for notebook computers. The need for higher resolution, larger diagonal displays for both notebook and desktop applications is discussed. Calculations have shown that the use of high conductivity gate metal such as aluminum or copper, together with the implementation of improved groundrules, can significantly extend today's technology. Aluminum suffers from problems with hillock formation during PECVD processing, and copper typically has poor adhesion to glass, reaction problems with silicon and other PECVD films, and difficulties in contacting it to other metals. Approaches to solving problems with both materials are presented, and a novel reduced mask process to fabricate high resolution, high aperture ratio 10.5” SXGA (1280 × 1024) displays is described. The process uses copper gate metallurgy with redundancy, without the need for extra processing steps. The resulting displays have 150 dpi color resolution, an aperture ratio of over 35%, and excellent image quality, making them the first high resolution displays that are suitable for notebook applications.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.