No CrossRef data available.
Published online by Cambridge University Press: 25 February 2011
We have grown HgCdTe/CdTe multiple quantum wells by molecular beam epitaxy which show room temperature photoluminescence and sharp absorption steps at mid-infrared wavelengths. Quantitative chemical mapping, performed by transmission electron microscopy, indicates minimal interdiffusion during growth. Annealing experiments performed at higher temperatures show that the interdiffusion coefficient is a strong function of the depth of the interface below the surface. Absorption spectra have been accurately modeled with a square well/envelope function approach. The films have been used to passively mode lock color center lasers and produce pulses as short as 120 fsec near 2.7 μm.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.