Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T03:51:50.383Z Has data issue: false hasContentIssue false

HfZnO/ZnO Heterostructures Fabricated Using Low-Cost Large-Area Compatible Sputtering Processes

Published online by Cambridge University Press:  24 February 2015

Chih-Hung Li
Affiliation:
Graduate Institute of Applied Mechanics, National Taiwan University, Taipei City 10617, Taiwan
Jian-Zhang Chen*
Affiliation:
Graduate Institute of Applied Mechanics, National Taiwan University, Taipei City 10617, Taiwan
I-Chun Cheng
Affiliation:
Graduate Institute of Photonics and Optoelectronics & Department of Electrical Engineering, National Taiwan University, Taipei City 10617, Taiwan
*
Get access

Abstract

We investigated the electrical properties of the rf-sputtered HfxZn1-xO/ZnO heterostructures. The thermal annealing on ZnO prior to the HfxZn1-xO deposition greatly influences the properties of the heterostructures. A highly conductive interface formed at the interface between HfxZn1-xO and ZnO thin films as the ZnO annealing temperature exceeded 500°C, leading to the apparent decrease of the electrical resistance. The resistance decreased with an increase of either thickness or Hf content of the HfxZn1-xO capping layer. The Hf0.05Zn0.95O/ZnO heterostructure with a 200-nm-thick 600°C-annealed ZnO exhibits a carrier mobility of 14.3 cm2V-1s-1 and a sheet carrier concentration of 1.93×1013 cm-2; the corresponding values for the bare ZnO thin film are 0.47 cm2V-1s-1 and 2.27×1012 cm-2, respectively. Rf-sputtered HfZnO/ZnO heterostructures can potentially be used to increase the carrier mobility of thin-film transistors in large-area electronics.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bae, J.-S., Jeong, Y.-E., Park, S., Applied Surface Science 321 (2014) 98.CrossRefGoogle Scholar
Hui, K.N., San Hui, K., Xia, Q., Cuong, T.V., Cho, Y.-R., Singh, J., Kumar, P., Kim, E.J., ECS Solid State Letters 2/6 (2013) Q43.CrossRefGoogle Scholar
Hassan, J., Mahdi, M., Yusof, Y., Abu-Hassan, H., Hassan, Z., Al-Attar, H., Monkman, A., Optical Materials 35/5 (2013) 1035.CrossRefGoogle Scholar
Xi, M., Wang, X., Zhao, Y., Zhu, Z., Fong, H., Applied Physics Letters 104/13 (2014) 133102.CrossRefGoogle Scholar
Chen, T.-P., Lee, K.-H., Chang, S.-P., Chang, S.-J., Chang, P.-C., Applied Physics Letters 103/2 (2013) 022101.CrossRefGoogle Scholar
Wang, L., Kang, Y., Liu, X., Zhang, S., Huang, W., Wang, S., Sensors and Actuators B: Chemical 162/1 (2012) 237.CrossRefGoogle Scholar
Chen, M., Wang, Z., Han, D., Gu, F., Guo, G., The Journal of Physical Chemistry C 115/26 (2011) 12763.CrossRefGoogle Scholar
Wu, J., Lin, H., Kuo, P., Su, B., Chu, S., Chen, Y., Liu, S., Chang, C., Wu, C., Electron Devices, IEEE Transactions on 61/5 (2014) 1403.Google Scholar
Caglar, Y., Caglar, M., Ilican, S., Aksoy, S., Yakuphanoglu, F., Journal of Alloys and Compounds (2014).Google Scholar
Li, Y.V., Ramirez, J.I., Sun, K.G., Jackson, T.N., Electron Device Letters, IEEE 34/7 (2013) 891.CrossRefGoogle Scholar
Jeong, K.-S., Kim, Y.-M., Yun, H.-J., Yang, S.-D., Kim, Y.-S., Kang, M.-H., Lee, H.-D., Lee, G.-W., Electron Device Letters, IEEE 32/12 (2011) 1701.CrossRefGoogle Scholar
Nian, Q., Zhang, M.Y., Schwartz, B.D., Cheng, G.J., Applied Physics Letters 104/20 (2014) 201907.CrossRefGoogle Scholar
Guillén, C., Montero, J., Herrero, J., Applied Surface Science 264 (2013) 448.CrossRefGoogle Scholar
Fujii, M., Ishikawa, Y., Ishihara, R., van der Cingel, J., Mofrad, M.R., Horita, M., Uraoka, Y., Applied Physics Letters 102/12 (2013) 122107.CrossRefGoogle Scholar
Sun, J., Yang, W., Huang, Y., Lai, W.S., Lee, A.Y., Wang, C.F., Gong, H., Journal of Applied Physics 112/8 (2012) 083709.CrossRefGoogle Scholar
Ahn, C.H., Kim, J.H., Cho, H.K., Journal of the Electrochemical Society 159/4 (2012) H384.CrossRefGoogle Scholar
Qadri, S., Kim, H., Horwitz, J., Chrisey, D., Journal of Applied Physics 88/11 (2000) 6564.CrossRefGoogle Scholar
Lin, M.-C., Chang, Y.-J., Chen, M.-J., Chu, C.-J., Journal of The Electrochemical Society 158/6 (2011) D395.Google Scholar
Zhu, S.-B., Geng, Y., Lu, H.-L., Zhang, Y., Sun, Q.-Q., Ding, S.-J., Zhang, D.W., Journal of Alloys and Compounds (2013).Google Scholar
Geng, Y., Xie, Z.-Y., Yang, W., Xu, S.-S., Sun, Q.-Q., Ding, S.-J., Lu, H.-L., Zhang, D.W., Surface and Coatings Technology/0 (2013).Google Scholar
Ahmad, M., Iqbal, Z., Hong, Z.L., Yang, J.X., Zhang, Y.W., Khalid, N.R., Ahmed, E., Integr Ferroelectr 145/1 (2013) 108.CrossRefGoogle Scholar
Zhou, X., Zhang, Y.-a., Shi, W., Guo, T., Journal of Materials Science: Materials in Electronics (2012) 1.Google Scholar
Zhou, X., Jiang, D., Lin, F., Ma, X., Shi, W., Physica B: Condensed Matter 403/1 (2008) 115.CrossRefGoogle Scholar
Li, C.-H., Chen, J.-Z., Cheng, I., Journal of Applied Physics 114/8 (2013) 084503.CrossRefGoogle Scholar
Li, C.-H., Chen, J.-Z., Journal of Alloys and Compounds 601 (2014) 223.CrossRefGoogle Scholar
Ahn, C.H., Yun, M.G., Lee, S.Y., Cho, H.K., IEEE Transactions on Electron Devices 61 (2014) 73.CrossRefGoogle Scholar
Kim, W.S., Shin, S.Y., Park, J.W., Journal of the Electrochemical Society 159/4 (2012) H353.Google Scholar
Park, J.W., Kim, W.S., Moon, Y.K., Kim, K.T., Shin, S.Y., Du Ahn, B., Lee, J.H., Electrochem Solid St 13/9 (2010) Ii295.Google Scholar
Biscaras, J., Bergeal, N., Hurand, S., Grossetête, C., Rastogi, A., Budhani, R., LeBoeuf, D., Proust, C., Lesueur, J., Physical review letters 108/24 (2012) 247004.CrossRefGoogle Scholar
Ohtomo, A., Hwang, H., Nature 427/6973 (2004) 423.CrossRefGoogle Scholar
Tsukazaki, A., Akasaka, S., Nakahara, K., Ohno, Y., Ohno, H., Maryenko, D., Ohtomo, A., Kawasaki, M., Nat Mater 9/11 (2010) 889.CrossRefGoogle Scholar
Chen, Y., Pryds, N., Kleibeuker, J.E., Koster, G., Sun, J., Stamate, E., Shen, B., Rijnders, G., Linderoth, S., Nano letters 11/9 (2011) 3774.CrossRefGoogle Scholar
Chin, H.-A., Cheng, I.-C., Huang, C.-I., Wu, Y.-R., Lu, W.-S., Lee, W.-L., Chen, J.Z., Chiu, K.-C., Lin, T.-S., Journal of Applied Physics 108/5 (2010) 054503.CrossRefGoogle Scholar
Lien, S.-T., Li, H.-C., Yang, Y.-J., Hsu, C.-C., Cheng, I.-C., Chen, J.-Z., Journal of Physics D: Applied Physics 46/7 (2013) 075202.CrossRefGoogle Scholar
Chin, H.A., Cheng, I.C., Li, C.K., Wu, Y.R., Chen, J.Z., Lu, W.S., Lee, W.L., J Phys D Appl Phys 44/45 (2011) 455101.CrossRefGoogle Scholar
Wu, T.-H., Chen, J.-Z., Hsu, C.-C., Cheng, I.-C., Journal of Physics D: Applied Physics 47/25 (2014) 255102.CrossRefGoogle Scholar
Huang, C.I., Chin, H.A., Wu, Y.R., Cheng, I.C., Chen, J.Z., Chiu, K.C., Lin, T.S., IEEE Transactions on Electron Devices 57/3 (2010) 696.CrossRefGoogle Scholar