Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T14:51:48.676Z Has data issue: false hasContentIssue false

Heterogeneous Integration of a LASER Induced Fluorescence Detection Device for Point-of-Care Microfluidic Biochemical Analysis

Published online by Cambridge University Press:  17 April 2012

Toshihiro Kamei*
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST) 1-2-1 Namiki, Tsukuba East Bldg., Tsukuba, Ibaraki 305-8564, Japan
Get access

Abstract

Fluorescence detection is more advantageous than electrochemical detection in terms of high sensitivity, multiplexed detection capability and isolation from analyte. Integration of fluorescence detection, however, is much more difficult. First, it would require heterogeneous integration of various optical components including an excitation source, an optical filter, a lens, a mirror and a detector. Second, most of integrated fluorescence detectors, even though not fully integrated, suffer from high limit of detection (LOD) compared to conventional optical system that consists of discrete optical components. We have reduced laser light scattering in an integrated hydrogenated amorphous Si (a-Si:H) fluorescence detector, significantly improving a limit-of-detection (LOD). The detection platform comprises a microlens and the annular fluorescence detector where a thick SiO2/Ta2O5 multilayer optical interference filter is monolithically integrated on an a-Si:H pin photodiode. With a microfluidic capillary electrophoresis (CE) device mounted on the platform, the integrated system is demonstrated to separate DNA restriction fragment digests with high speed, high sensitivity and high separation efficiency, implying single molecular DNA detection when combined with polymerase chain reaction (PCR). We are now working towards integration of an excitation source to fabricate heterogeneously integrated laser-induced fluorescence detection (LIF) device that would be comprised of an InGaN laser diode, microlenses and the integrated a-Si:H fluorescence detector.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Whitesides, G. M., Nature 442, 368 (2006).CrossRefGoogle Scholar
Harrison, D. J., Fluri, K., Seiler, K., Fan, Z. H., Effenhauser, C. S., Manz, A., Science 261, 895 (1993).CrossRefGoogle Scholar
Unger, M. A., Chou, H. P., Thorsen, T., Scherer, A., Quake, S. R., Science 288, 113 (2000).CrossRefGoogle Scholar
Fu, A. Y., Chou, H. P., Spence, C., Arnold, F. H., Quake, S. R., Analytical Chemistry 74, 2451 (2002).CrossRefGoogle Scholar
Hansen, C. L., Skordalakes, E., Berger, J. M., Quake, S. R., Proc. Natl. Acad. Sci. U. S. A. 99, 16531 (2002).CrossRefGoogle Scholar
Grover, W. H., Skelley, A. M., Liu, C. N., Lagally, E. T., Mathies, R. A., Sensors and Actuators B-Chemical 89, 315 (2003).CrossRefGoogle Scholar
Lagally, E. T., Medintz, I., Mathies, R. A., Analytical Chemistry 73, 565 (2001).CrossRefGoogle Scholar
Burns, M. A., Johnson, B. N., Brahmasandra, S. N., Handique, K., Webster, J. R., Krishnan, M., Sammarco, T. S., Man, P. M., Jones, D., Heldsinger, D., Mastrangelo, C. H., Burke, D. T., Science 282, 484 (1998).CrossRefGoogle Scholar
Blazej, R. G., Kumaresan, P., Mathies, R. A., Proc. Natl. Acad. Sci. U. S. A. 103, 7240 (2006).CrossRefGoogle Scholar
Kamei, T., Paegel, B. M., Scherer, J. R., Skelley, A. M., Street, R. A., Mathies, R. A., Analytical Chemistry 75, 5300 (2003).CrossRefGoogle Scholar
Simpson, P. C., Roach, D., Woolley, A. T., Thorsen, T., Johnston, R., Sensabaugh, G. F., Mathies, R. A., Proceedings of the National Academy of Sciences, USA 95, 2256 (1998).CrossRefGoogle Scholar
Hjerten, S., Journal of Chromatography 347, 191 (1985).CrossRefGoogle Scholar
Maeda, E., Kataoka, M., Hino, M., Kajimoto, K., Kaji, N., Tokeshi, M., Kido, J. I., Shinohara, Y., Baba, Y., Electrophoresis 28, 2927 (2007).CrossRefGoogle ScholarPubMed
Chabinyc, M. L., Chiu, D. T., McDonald, J. C., Stroock, A. D., Christian, J. F., Karger, A. M., Whitesides, G. M., Analytical Chemistry 73, 4491 (2001).CrossRefGoogle Scholar
Kamei, T., Wada, T., Applied Physics Letters 89, 114101 (2006).CrossRefGoogle Scholar
Pickup, J. C., Hussain, F., Evans, N. D., Rolinski, O. J., Birch, D. J. S., Biosens. Bioelectron. 20, 2555 (2005).CrossRefGoogle Scholar
Thrush, E., Levi, O., Cook, L. J., Deich, J., Kurtz, A., Smith, S. J., Moerner, W. E., Harris, J. S., Sensors and Actuators B-Chemical 105, 393 (2005).CrossRefGoogle Scholar
Kasahara, D., Morita, D., Kosugi, T., Nakagawa, K., Kawamata, J., Higuchi, Y., Matsumura, H., Mukai, T., Appl. Phys. Express 4, (2011).CrossRefGoogle Scholar