Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T13:24:55.688Z Has data issue: false hasContentIssue false

Heteroepitaxy of Strained and Not-Strained Ferroelectric Superlattices and their Electric Properties.

Published online by Cambridge University Press:  15 February 2011

Hitoshi Tabata
Affiliation:
Institute for Scientific and Industrial Research, Osaka University 8-1 Mihogaoka, Ibaraki, Osaka 567, Japan.
Masakazu Hamada
Affiliation:
Institute for Scientific and Industrial Research, Osaka University 8-1 Mihogaoka, Ibaraki, Osaka 567, Japan.
Tomoji Kawai
Affiliation:
Institute for Scientific and Industrial Research, Osaka University 8-1 Mihogaoka, Ibaraki, Osaka 567, Japan.
Get access

Abstract

Bismuth based artificial superlattices have been formed by a layer-by-layer laser deposition with in-situ monitoring of RHEED. The Bi2O2/WO6, Bi2O2/SrTa2O9, Bi2O2/SrTa2O9 /SrTiO3 and Bi2O2/SrTa2O9/BaTiO3 are constructed epitaxially by a single, double and triple perovskite layers sandwiched by Bi2O2 layers, respectively. The dielectric constant increases with increasing the number of perovskite layers. And the D-E hysteresis loop (ferroelectric properties) appears along the c-axis direction in odd perovskite layers (n=l and 3). We have also formed the SrTiO3/BiWO6/SrTiO3 multi layers. With this combination, the STO layers are isolated by the BWO layers. The dimensionality of STO layer can be controlled by changing the thickness of BWO layers. Below the BWO thickness of 500 Å, the εr increases monotonously with decreasing the BWO thickness. Therefore, the the coulomb force, which is in proportion to inverse of the distance, plays an essential role for the dielectric constant. The formation of “artificially constructed ferroelectric films” by a layer-by-layer deposition method will be discussed ad an essential approach to elucidate the mechanism of ferroelectricity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Aurivillius, B.: Arkiv Kemi 1, 463 (1949).Google Scholar
2. Somolenskii, G. A., Isupov, V. A. and Agranoskaya, A. I.: Sov.Phys.-Solid Statc1, 149(1959).Google Scholar
3. Cummins, S. E. and Cross, L. E.: J. Appl. Phys. 39, 2268 (1968).Google Scholar
4. Mihara, T.: Proc.Sym. Integrated Ferroclectrics (1992) p. 137.Google Scholar
5. Araujo, C. A., Cuchiaro, J. D., Mcmillan, L. D., Scott, M. C. and Scot, J. F.: Nature 374, 627 (1995).Google Scholar
6. Vijay, D. P., Desu, S. B., Nagata, M., Zahng, X. and Chen, T. C., Mat.Rcc.Soc.Symp.Proc. 361, 3 (1995).Google Scholar
7. Joshi, P. C., Mansingh, A., Kamalasanan, M. N. and Chandra, S.: Appl.Phys.Lett. 59, 2389 (1991).Google Scholar
8. Maffei, N. and Krupanidhi, S. B.: J.Appl.Phys. 74, 7551 (1993).Google Scholar
9. Nakamura, T., Muhammet, R., Shimizu, M. and Shiosaki, T.:Jpn.J.Appl.Phys. 32, 4086 (1993).Google Scholar
10. Ramesh, R., Inam, A., Chan, W. K., Wilkens, B., Myers, K., Rcmshing, K., Hart, D. L. and Tarascon, J. M.: Science 252, 944 (1991).Google Scholar
11. Jona, F. and Shirane, G.: Ferroelectric Crystals (Dover, New York, 1960) p. 274.Google Scholar
12. Tabata, H., Tanaka, T. and Kawai, T.: Appl.Phys.Lett., 65, 1970 (1994).Google Scholar
13. Tabata, H., Hamada, M. and Kawai, T.: Jpn.J.Appl.Phys. 34, 5146 (1995).Google Scholar
14. Subbaro, E. C. Phys. Rev. 122, 804 (1961).Google Scholar
15. Subbaro, E. C. J. Chem. Phys. 34, 695 (1961).Google Scholar