No CrossRef data available.
Published online by Cambridge University Press: 16 February 2011
Low temperature heteroepitaxial growth of Si1−xGex films with mole fractions “x” ranging from 0.07 to 0.72 on Si(100) has been achieved by Remote Plasma-enhanced Chemical Vapor Deposition (RPCVD) at substrate temperatures of 305°C and 450°C. Reflection High Energy Electron Diffraction (RHEED), Transmission Electron Microscopy (TEM), and Secondary Ion Mass Spectroscopy (SIMS) were employed to characterize the crystallinity, composition and interfacial sharpness. The Si1−xGex films with thickness below the critical layer thickness were confirmed to have excellent crystallinity with defect density below the sensitivity of TEM analysis (105 cm−2). The Ge profile, from SIMS analysis, in a Si/Si0.8Ge0.2/Si/Si0.82Ge0.18 multilayer structure was found to have a transition width of 30Å/decade, which is the resolution limit of SIMS analysis. There is no Ge segregation observed at the Si/Si1−xGex interface. A superlattice structure with 24 pairs of Si(60Å)/Si0.8Ge0.2 (60Å) layers has been successfully grown by RPCVD at 450°C. From cross-sectional TEM analysis, very low defect densities and abrupt Ge transitions were confirmed.