Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T00:16:34.442Z Has data issue: false hasContentIssue false

Helium Bubbles in Fe: Equilibrium Configurations and Modification by Radiation

Published online by Cambridge University Press:  21 February 2013

Xiao Gai
Affiliation:
Mathematical Sciences Department, Loughborough University, Leicestershire, LE11 3TU, UK
Roger Smith
Affiliation:
Mathematical Sciences Department, Loughborough University, Leicestershire, LE11 3TU, UK
Steven Kenny
Affiliation:
Mathematical Sciences Department, Loughborough University, Leicestershire, LE11 3TU, UK
Get access

Abstract

We have examined the properties of helium bubbles in Fe using two different Fe-He potentials. The atomic configurations and formation energies of different He-vacancy complexes are determined and their stability in the region of nearby collision cascades is investigated. The results show that the optimal He to Fe vacancy ratio increases from about 1:1 for approximately 5 vacancies up to about 4:1 for 36 vacancies. Collision cascades initiated near the complex show that Fe vacancies produced by the cascades readily become part of the He-vacancy complexes. The energy barrier for an isolated He interstitial to diffuse was found to be 0.06 eV. Thus a possible mechanism for He bubble growth would be the addition of vacancies during a radiation event followed by the subsequent accumulation of mobile He interstitials produced by the corresponding nuclear reaction.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zinkle, S. J., Phys. Plasmas, 12(2005) 058101.10.1063/1.1880013CrossRefGoogle Scholar
Lucas, G., Schäublin, R., J. Phys.: Condens. Mater, 20(2008) 415206.Google Scholar
Stoller, R. E., Golubov, S. I., Kamenski, P. J., Seletskaia, T., Osetsky, Yu. N., Phil. Mag. 90(2010) 923934.10.1080/14786430903298768CrossRefGoogle Scholar
Gao, F., Deng, Huiqiu, Heinisch, H. L., Kurtz, R. J., J. Nucl. Mater. 418(2011) 115120.10.1016/j.jnucmat.2011.06.008CrossRefGoogle Scholar
Ackland, G. J., Bacon, D. J., Calder, A. F. and Harry, T., Phil. Mag. A 75(1997) p.713.10.1080/01418619708207198CrossRefGoogle Scholar
Ackland, G. J., Mendelev, M. I., Srolovitz, D. J., Han, S., Barashev, A. V., J. Phys.: Condens. Mater, 16(2004) S2629.Google Scholar
Aziz, R. A., Janzen, A. R., Moldover, M. R., Phys. Rev. Lett. 74(1995) 1586.10.1103/PhysRevLett.74.1586CrossRefGoogle Scholar
Miller, M. K., Russell, K. F., Pareige, P., Starink, M. J., Thomson, R. C., Mater. Sci. Eng. A 250(1998) 49.10.1016/S0921-5093(98)00535-8CrossRefGoogle Scholar
Auger, P., Pareige, P., Welzel, S., van Duysen, J-C., J. Nucl. Mater. 280(2000) 331344.10.1016/S0022-3115(00)00056-8CrossRefGoogle Scholar
Henkelman, G., Jónsson, H., J. Chem. Phys. 111(1999) 7010.10.1063/1.480097CrossRefGoogle Scholar
Fu, C. C., Willaime, F., Phys. Rev. B 72(2005) 064117.10.1103/PhysRevB.72.064117CrossRefGoogle Scholar