Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T15:17:20.381Z Has data issue: false hasContentIssue false

Heat transport across a gold nanowire/water interface enhanced by the solution ionic strength

Published online by Cambridge University Press:  15 July 2015

Susil Baral
Affiliation:
Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA
Andrew J. Green
Affiliation:
Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA
Hugh H. Richardson
Affiliation:
Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA
Get access

Abstract

Lithographically fabricated gold nanowires are optically excited with 532nm CW laser and the local temperature change is measured in air, pure water and various concentration aqueous solutions of ionic solutes NaCl, Na2SO4 and MgSO4 using the thermal sensor film of Al0.94Ga0.06N embedded with Er3+ ions. The interface thermal resistance for heat transfer from the excited nanowires into the surrounding liquid is determined from the slopes of the temperature change versus laser intensity plots obtained for the nanowire excitation under various solutions. Addition of ionic solute molecules into the solution decreases the interface thermal resistance and hence leads to increased heat dissipation into the surrounding liquid. Interface thermal resistance decreases exponentially with the ionic strength of solution and saturates around zero for solution ionic strength of 0.3M and higher.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Neumann, O.; Urban, A. S.; Day, J.; Lal, S.; Nordlander, P.; Halas, N. J. ACS Nano 2013, 7, (1), 4249.CrossRefGoogle Scholar
Neumann, O.; Feronti, C.; Neumann, A. D.; Dong, A.; Schell, K.; Lu, B.; Kim, E.; Quinn, M.; Thompson, S.; Grady, N.; Nordlander, P.; Oden, M.; Halas, N. J. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, (29), 1167711681.CrossRefGoogle Scholar
Polman, A. ACS Nano 2013, 7, (1), 1518.CrossRefGoogle Scholar
Ghasemi, H.; Ni, G.; Marconnet, A. M.; Loomis, J.; Yerci, S.; Miljkovic, N.; Chen, G. Nature Communications 2014, 5.Google Scholar
Lee, S. W.; Yang, Y.; Lee, H.-W.; Ghasemi, H.; Kraemer, D.; Chen, G.; Cui, Y. Nature Communications 2014, 5.Google Scholar
Dickerson, E. B.; Dreaden, E. C.; Huang, X. H.; El-Sayed, I. H.; Chu, H. H.; Pushpanketh, S.; McDonald, J. F.; El-Sayed, M. A. Cancer Letters 2008, 269, (1), 5766.CrossRefGoogle Scholar
Huang, X. H.; Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A. Lasers In Medical Science 2008, 23, (3), 217228.CrossRefGoogle Scholar
Hirsch, L. R.; Stafford, R. J.; Bankson, J. A.; Sershen, S. R.; Rivera, B.; Price, R. E.; Hazle, J. D.; Halas, N. J.; West, J. L. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, (23), 1354913554.CrossRefGoogle Scholar
Huang, X. H.; Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A. Nanomedicine 2007, 2, (5), 681693.CrossRefGoogle Scholar
Kah, J. C. Y.; Chen, J.; Zubieta, A.; Hamad-Schifferli, K. ACS Nano 2012, 6, (8), 67306740.CrossRefGoogle Scholar
Wijaya, A.; Schaffer, S. B.; Pallares, I. G.; Hamad-Schifferli, K. ACS Nano 2009, 3, (1), 8086.CrossRefGoogle Scholar
Jiao, P. F.; Zhou, H. Y.; Chen, L. X.; Yan, B. Curr. Med. Chem. 2011, 18, (14), 20862102.CrossRefGoogle Scholar
Lapotko, D. O.; Lukianova-Hleb, E. Y.; Oraevsky, A. A. Nanomedicine 2007, 2, (2), 241253.CrossRefGoogle Scholar
Ge, Z. B.; Cahill, D. G.; Braun, P. V. Phys. Rev. Lett. 2006, 96, (18), 186101.CrossRefGoogle Scholar
Shenogina, N.; Godawat, R.; Keblinski, P.; Garde, S. Phys. Rev. Lett. 2009, 102, (15).CrossRefGoogle Scholar
Prasher, R. Appl. Phys. Lett. 2009, 94, (4), 041905.CrossRefGoogle Scholar
Losego, M. D.; Grady, M. E.; Sottos, N. R.; Cahill, D. G.; Braun, P. V. Nature Materials 2012, 11, (6), 502506.CrossRefGoogle Scholar
Ong, W.-L.; Rupich, S. M.; Talapin, D. V.; McGaughey, A. J. H.; Malen, J. A. Nature Materials 2013, 12, (5), 410415.CrossRefGoogle Scholar
Green, A. J.; Alaulamie, A. A.; Baral, S.; Richardson, H. H. Nano Lett. 2013, 13, (9), 41424147.CrossRefGoogle Scholar
Baral, S.; Green, A. J.; Livshits, M. Y.; Govorov, A. O.; Richardson, H. H. ACS Nano 2014, 8, (2), 14391448.CrossRefGoogle Scholar
Carlson, M. T.; Khan, A.; Richardson, H. H. Nano Lett. 2011, 11, (3), 10611069.CrossRefGoogle Scholar