Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T13:24:52.392Z Has data issue: false hasContentIssue false

Growth Reorientation with the Annealing Temperature of SrBi2Ta2O9 Films Deposited by PLD

Published online by Cambridge University Press:  01 February 2011

Ma. P. Cruz
Affiliation:
Centro de Ciencias de la Materia Condensada (CCMC)-UNAM. Km. 107, Carretera Tijuana Ensenada. Ensenada B.C., México. C.P. 22800
Jorge J. Portelles
Affiliation:
Facultad de Física-IMRE, Universidad de la Habana, Cuba.
Jesús M. Siqueiros
Affiliation:
Centro de Ciencias de la Materia Condensada (CCMC)-UNAM. Km. 107, Carretera Tijuana Ensenada. Ensenada B.C., México. C.P. 22800
Get access

Abstract

Films of SrBi2Ta2O9 (SBT) were grown on Pt/TiO2/SiO2/Si substrates by the pulsed laser deposition (PLD) technique. The deposits were made at temperatures between 570°C and 715°C, and post-annealed at 750°C. The films grown at 610°C show a (115) preferentially orientation with a small peaks associated to (00l) planes. At higher deposition temperatures, the (00l) peaks increase their intensity, a tendency that is intensified after the heat treatment at 750°C. However, when the films grown at 590–610°C are heat-treated at 750°C, there is a reduction of the crystallites oriented in the (00l) direction, leading to an enhancement of the polarization, reflected in the maximum value of 2Pr = 9.1 μC/cm2 and a coercive field, Ec, of 52.0 KV/cm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Majumder, S.B., Bhaskar, S., Katiyar, R.S.. Integrated Ferroelectrics, 42, #1–4, 245 (2002).Google Scholar
2. Schneller, T., Waser, R.. Ferroelectrics. 267, 293 (2002).Google Scholar
3. Lee, H.N., Zakharov, D.N., Senz, S., Pignolet, A. and Hesse, D.. Appl. Phys. Lett. #18, 79, 2961 (2001).Google Scholar
4. Lee, H.N., Visinoiu, A., Senz, S., Harnagea, C., Pignolet, A., Hesse, D. and Gosele, U.. J. Appl. Phys. #11, 88, 6658 (2000).Google Scholar
5. Moo, S.E., Song, T.K., Back, S.B., Kwun, S.I., Yoon, J.G., and Lee, J.S. Appl. Phys. Lett. 75, 2827 (1999).Google Scholar
6. Lettieri, J., Jia, Y., Urbanik, M., Weber, C.I., María, J.P., Schlom, D.G., Li, H., Ramesh, R., Uecker, R., and Reiche, P.. Appl. Phys. Lett. 73, 2923 (1998).Google Scholar
7. Cruz-Jáuregui, M.P., Siqueiros, J.M. and Portelles, J.. J. of Mater. Sci.: Mater. in Electronics. 12, 461 (2001).Google Scholar
8. Newnham, R.E., Wolfe, R.W. and Dorrian, J.F.. Mater. Res. Bull. 6, 1029 (1971).Google Scholar
9. Shimakawa, Y., Kubo, Y., Nakagawa, Y., Kamiyama, T., Asano, H., and Izumi, F.. Apply. Phys. Lett. 74, 1904 (1999).Google Scholar
10. Aurivullius, B.. Arkiv för Kemi, 1, 463 (1949).Google Scholar
11. Rae, A.D., Thompson, J.G., and Withers, R.L.. Acta Crystallogr., Sect. B: Struct. Sci. 48, 418 (1992).Google Scholar
12. Das, R.R., Bhattacharya, P., Pérez, W., Morales Cruz, A., Katiyar, R.S. and Desu, S.B.. Integrated Ferroelectrics. 42, #1–4, 305 (2002).Google Scholar
13. Wang, Y.P., Zhu, T. and Liu, Z.G.. Appl. Phys. A. 74, 665 (2002).Google Scholar
14. Werner, S., Thomas, D., Streiffer, S.K., Auciello, O., Kingon, A.I.. Mat. Res. Soc. Symp. Proc. 397, 235 (1996).Google Scholar
15. Fujita, J., Shoshitaka, T., Kamijo, A., Satoh, T. and Igarashi, H.. J. Appl. Phys. 64, 1292 (1988).Google Scholar