Published online by Cambridge University Press: 11 February 2011
Polycrystalline silicon carbide (poly-SiC) films were deposited by atmospheric pressure chemical vapor deposition (APCVD) at epitaxial growth temperatures on planar, 100 nm-thick polysilicon sacrificial layers using two recipes that included or excluded a pre-growth carbonization step. Poly-SiC films grown using the carbonization-based recipe exhibited a relatively high degree of (111) 3C-SiC texture and had uniform, well-defined, void-free poly-SiC/polysilicon interfaces. In contrast, poly-SiC films grown without carbonization were randomly oriented, had numerous poly-SiC inclusions that sometimes completely penetrated the polysilicon underlayer, and had a higher surface roughness than the films grown with carbonization. Analysis of micromechanical clamped-clamped (C-C) beam resonators fabricated from films grown using the two differing recipes shows that the carbonization step is needed to protect the thin polysilicon sacrificial layer from voids and inclusions and thus maintain the proper spacing between the drive electrodes and the resonant beams.