Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T23:54:01.393Z Has data issue: false hasContentIssue false

Growth of Highly Oriented ZnO Nanorods by Chemical Vapor Deposition

Published online by Cambridge University Press:  15 March 2011

Sai-Chang Liu
Affiliation:
Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
Jih-Jen Wu
Affiliation:
Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
Get access

Abstract

Highly-oriented ZnO nanorods were grown on the fused silica substrates by a thermal CVD technique using Zinc acetylacetonate (Zn(C5H7O2)2). The substrate was heated to 500°C and the vaporization temperature of Zn(C5H7O2)2 was keep at around 135°C. X-ray diffraction and TEM analyses reveal that the nanorods are preferentially oriented toward the c-axis direction. Photoluminescence (PL) and absorption measurements show a strong emission at around 380nm which corresponds to the near band-edge emission of the bulk ZnO. Moreover, the negligible green emission band in PL spectrum and the absence of E1(LO) mode of the ZnO crystal in Raman spectrum indicate a low concentration of oxygen vacancy in the highly-oriented ZnO nanorods.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lieber, C. M., Solid State Commun. 107, 607 (1998).Google Scholar
2. Cheng, Y., Bagnall, D. M., Koh, H., Park, K., Hiraga, K., Zhu, Z., Yao, T., J. Appl. Phys. 84, 3912 (1998).Google Scholar
3. Ohtomo, A., Kawasaki, M., Sakurai, Y., Ohkubo, I., Shiroki, R., Yoshida, Y., Yasuda, T., Segawa, Y., Koinuma, H., Mater. Sci. Eng. B 56, 263 (1998).Google Scholar
4. Bagnall, D. M., Chen, Y. F., Zhu, Z., Yao, T., Koyama, S., Shen, M. Y., Goto, T., Appl. Phys. Lett. 70, 2230 (1997).Google Scholar
5. Zu, P., Tang, Z. K., Wong, G. K. L., Kawasaki, M., Ohtomo, A., Koinuma, H., Segawa, Y., Solid State Commun. 103, 459 (1997).Google Scholar
6. Huang, M. H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., Yang, P., Science. 292, 1879 (2001).Google Scholar
7. Huang, M. H., Wu, Y., Feick, H., Tran, N., Weber, E., Yang, P., Adv. Mater. 13, 113 (2001).Google Scholar
8. Kong, Y. C., Yu, D. P., Zhang, B., Fang, W., Feng, S. Q., Appl. Phys. Lett. 78, 407 (2001).Google Scholar
9. Pan, Z. W., Dai, Z. R., Wang, Z. L., Science. 291, 1947 (2001).Google Scholar
10. Vanheusden, K., Warren, W. L., Seager, C. H., Tallant, D. R., Voigt, J. A., Gnade, B. E., J. Appl. Phys. 79, 7983 (1996).Google Scholar
11. Fu, Z., Lin, B., Liao, G., Wu, Z., J. Cryst. Growth. 193, 316 (1998).Google Scholar
12. Xu, X. L., Lau, S. P., Chen, J. S., Chen, G. Y., Tay, B. K., J. Cryst. Growth. 223, 201 (2001).Google Scholar