Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T14:15:38.516Z Has data issue: false hasContentIssue false

Growth of aligned wurtzite GaN nanorods on Si(111): Role of Silicon nitride intermediate layer

Published online by Cambridge University Press:  23 April 2012

Praveen Kumar
Affiliation:
Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
Malleswararao Tangi
Affiliation:
Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
Satish Shetty
Affiliation:
Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
Manoj Kesaria
Affiliation:
Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
S. M. Shivaprasad*
Affiliation:
Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
*
*Corresponding Author Email: smsprasad@jncasr.ac.in
Get access

Abstract:

We present here a report on a role of initial nitridation of Si(111) surface on GaN nanorod growth. High quality wurtzite GaN nanorods are grown by Molecular Beam Epitaxy on bare Si(111)-7x7, crystalline and amorphous silicon nitride at 750oC, under nitrogen rich conditions. Using in-situ reflection high energy electron diffraction and ex-situ X-ray photoelectron spectroscopy, field emission scanning electron microscopy and photoluminescence, the structural and chemical properties are monitored. In the first part of the study, we have optimized the conditions of the N2* RF plasma, for formation of crystalline and amorphous silicon nitride on Si(111)-7x7 surface. While in the second part, GaN nanorods are grown on clean and these modified Si(111) substrates. Anisotropic spots are observed by RHEED for GaN grown on clean Si and on the amorphous silicon nitride, while circular, sharp and intense RHEED spots have been observed for GaN grown on crystalline Si3N4. FESEM results show nanorod growth in all the three different conditions. However, GaN nanorods grown on crystalline Si3N4 surface are observed to be self aligned and oriented along <0001> direction, while those grown on amorphous silicon nitride and bare Si(111) surfaces show great disorder increasing, respectively. Overall, the results clearly demonstrate that high quality of dense and self aligned c-oriented GaN nanorods can be formed on Si(111) surface by modifying it by appropriate nitridation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES:

1. Thahab, S. M., Abu Hassan, H., and Hassan, Z., World Academy of Science, Engineering and Technology, 55 (2009) 11.Google Scholar
2. Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F. and Yan, H., Adv. Mater., 15 (2003) 353.Google Scholar
3. Choi, J. H., Zoulkarneev, A., Kim, S., Baik, C. W., Yang, M. H., Park, S. S., Suh, H., Kim, U. J., Son, H. B., Lee, J. S., Kim, M., Kim, J. M. and Kim, K., Nature Photonics, (In press doi:10.1038/nphoton.2011.253)Google Scholar
4. Chen, Z., Cao, C., Li, W. S. and Surya, C., Cryst. Growth Des., 9 (2009) 792.Google Scholar
5. Stach, E. A., Pauzauskie, P. J., Kuykendall, T., Goldberger, J., He, R., Yang, P., Nano Lett., 3 (2003) 867.Google Scholar
6. Zhong, Zhaohui, Qian, Fang, Wang, Deli, and Lieber, Charles M., Nano Lett., 3 (2003) 343.Google Scholar
7. Han, S., Jin, W., Zhang, D., Tang, T., Li, C., Liu, X., Liu, Z., Lei, B., Zhou, C., Chem. Phys. Lett., 389 (2004) 176.Google Scholar
8. Callega, E., Sanchez-Garcia, M.A., Sanchez, F. J., Calle, F., Naranjo, F.B., Munoz, E.. Phys. Rev. B, 62 (2000) 16826.Google Scholar
9. Pacheco-Salazar, D. G., Leite, J. R., Cerdeira, F., Meneses, E. A., Li, S. F., As, D. J., and Lischka, K. Semicond. Sci. Technol., 21 (2006) 846.Google Scholar
10. Iwanaga, T., Suzuki, T., Yagi, S., Motooka, T.. J. Appl. Phys., Vol 98 (2005) 104303.Google Scholar
11. Bertness, K. A., Sanford, N. A., and Davydov, A. V., IEEE J. Select. Top. Quant. Electron., 847858 (2010) 17.Google Scholar
12. Wang, X., Sun, X., Fairchild, M. and Hersee, S. D., Appl. Phys. Lett. 89, (2006) 233115.Google Scholar
13. Hersee, S. D., Sun, X. and Wang, X., Nano Lett., 6 (2006) 1808.Google Scholar
14. Pauzauskie, P. J., Talaga, D., Seo, K., Yang, P. and Labarthet, F. L.. J. Am. Chem. Soc., 127 (2005) 17146.Google Scholar
15. Consonni, V., Knelangen, M., Geelhaar, L., Trampert, A., and Riechert, H., Phys. Rev. B, 81 (2010) 085310.Google Scholar
16. Landre, O., Bougerol, C., Renevier, H. and Daudin, B., Nanotechnology, 20 (2009) 415602.Google Scholar