Hostname: page-component-5b777bbd6c-f9nfp Total loading time: 0 Render date: 2025-06-20T05:02:45.853Z Has data issue: false hasContentIssue false

Growth Induced Alignment Of The First Neighbor Shell Of CAs In AlxGa1−xAs

Published online by Cambridge University Press:  15 February 2011

J. -F. Zheng
Affiliation:
Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015, USA
Michael Stavola
Affiliation:
Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015, USA
C. R. Abernathy
Affiliation:
Department of Materials Science, University of Florida, Gainesville, Florida, 32611, USA
S. J. Pearton
Affiliation:
Department of Materials Science, University of Florida, Gainesville, Florida, 32611, USA
Get access

Abstract

We have discovered a growth-induced alignment of the Al and Ga first neighbors of CAs, acceptors in AlxGa1−xAs grown by metalorganic molecular beam epitaxy. This growth induced alignment has been detected from the polarization dependence of the C atom's vibrational absorption bands that the alignment gives rise to. The alignment of the first neighbor shell of CAs also gives rise to aligned CAs-H complexes when the C is passivated by H. This leads to polarized H-stretching absorption bands which have also been observed. The growth-induced alignment provides information which helps us to assign the complicated CAsvib rational spectrum observed in the AlxGa1−xAs alloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

1. Abernathy, C.R., State-of-the-Art Program on Compound Semiconductors XXIV, edited by Ren, F., Pearton, S.J., Chu, S.N.G., Shul, R.J., Pletschen, W. and Kamijo, W. (Electrochem. Soc., Pennington, 1996), v. 96–2, p. 1.Google Scholar
2. Newman, R.C., Imperfections in III/VMaterials, edited by Weber, E. (Academic, Boston, 1993), p. 117.Google Scholar
3. Theis, W. M., Bajaj, K.K., Litton, C.W., and G.Spitzer, W., Appl. Phys. Lett. 41, 70 (1982).Google Scholar
4. Wagner, J., Fischer, A., and Ploog, K., Appl. Phys. Lett. 62, 3482 (1993).Google Scholar
5. Davidson, B.R., Newman, R.C., Robbie, D.A., Sangster, M.J.L., Wagner, J., Fischer, A., and Ploog, K., Semicond. Sci. Technol. 8, 611 (1993).Google Scholar
6. Ono, H. and Furuhata, N., Appl. Phys. Lett. 59, 1881 (1991).Google Scholar
7. Stangster, M.J.L., Newman, R.C., Gledhill, G.A., and Upadhyay, S.B., Semicond. Sci. Technol. 7, 1295 (1992).Google Scholar
8. Pritchard, R.E., Newman, R.C., Wagner, J., Fuchs, F., Jones, R., Öberg, S., Phys. Rev. B 50, 10628 (1994).Google Scholar
9. Woodhouse, K., Newman, R.C., Nicklin, R., Bradley, R.R., and Sangster, M.J.L., J. Cryst. Growth 120, 323 (1992).Google Scholar
10. Clerjaud, B., Gendron, F., Krause, M., and Ulrici, W., Phys. Rev. Lett. 65, 1800 (1990).Google Scholar
11. Pritchard, R.E., Davidson, B.R., Newman, R.C., Bullough, T.J., Joyce, T.B., Jones, R., and Öberg, S., Semicond. Sci. Technol. 9, 140 (1994).Google Scholar
12. Wagner, J., Pritchard, R.E., Davidson, B.R., Newman, R.C., Bullough, T.J., Joyce, T.B., Button, C., and Roberts, J.S., Semicond. Sci. Technol. 10, 639 (1995).Google Scholar
13. Davidson, B.R., Newman, R.C., Bullough, T.J., and Joyce, T.B., Phys. Rev. B 48, 17106 (1993).Google Scholar
14. Wagner, J., Bachem, K.H., Davidson, B.R., Newman, R.C., Bullough, T.J., and Joyce, T.B., Phys. Rev. B 51, 4150 (1995);Google Scholar
15. Jones, R. and Öberg, S., Phys. Rev. B 44, 3673 (1991).Google Scholar
16. Watanabe, K. and Yamazaki, H., J. Appl. Phys. 74, 5587 (1993).Google Scholar
17. Jones, R. and Öberg, S., Phys. Rev. B 49, 5306 (1994).Google Scholar
18. Watkins, G.D., Early Stages of Oxygen Precipitation in Silicon, edited by Jones, R. (Kluwer, Dordrecht, 1996), p. 1.Google Scholar
19. Skolnick, M.S., Harris, T.D., Tu, CW., Brennan, T.M., and Sturge, M.D., Appl. Phys. Lett. 46 427 (1985).Google Scholar
20. Skolnick, M.S., Halliday, D.P., and Tu, C.W., Phys. Rev. B 38, 4165 (1988), and references contained therein..Google Scholar
21. Charbonneau, S. and Thewalt, M.L.W., Phys. Rev. B 41, 8221 (1990), and references contained therein.Google Scholar
22. Cheng, Y., Stavola, M., Abernathy, C.R., Pearton, S.J., and Hobson, W.S., Phys. Rev. B 49, 2469 (1994).Google Scholar
23. Davidson, B.R., Newman, R.C., Kaneko, T., and Naji, O., Phys. Rev. B 50, 12250 (1994).Google Scholar
24. Davidson, B.R., Newman, R.C., and Bachem, K.H., Phys. Rev. B 52, 5179 (1995).Google Scholar
25. Kozuch, D.M., Stavola, M., Pearton, S.J., Abernathy, C.R., and Hobson, W.S., J. Appl. Phys. 73, 3716 (1993).Google Scholar
26. Lee, S.-G. and Chang, K.J., Phys. Rev. B 54, 8522 (1996).Google Scholar
27. Davidson, B. R., Newman, R.C., and Bachem, K.H., Phys. Rev. B 54, 17223 (1996).Google Scholar
28. Veloarisoa, I.A., Stavola, M., Cheng, Y.M., Uftring, S., Watkins, G.D., Pearton, S.J., Abernathy, C. R., and Lopata, J., Phys. Rev. B 47, 16237 (1993).Google Scholar