No CrossRef data available.
Published online by Cambridge University Press: 30 August 2011
We used a “graphene-like” mechanical exfoliation to obtain atomically thin films of TiTe2. The building blocks of titanium ditelluride are atomic tri-layers separated by the van der Waals gaps. The exfoliation procedure allows one to obtain the few-atom-thick films with strong confinement of charge carriers and phonons. We have verified the crystallinity of the exfoliated films and fabricated the back-gated field-effect devices. The current – voltage characteristics of the TiTe2 devices revealed strong non-linearity, which suggests the charge-density wave effects. The obtained results are important for the proposed application of TiTe2 for the charge-density wave devices and thermoelectric energy conversion.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.