Published online by Cambridge University Press: 15 February 2011
We describe spatially resolved grain orientation mapping of polycrystalline films using a synchrotron-based x-ray microdiffraction system. The system consists of a tapered glass capillary as a white x-ray concentrator, an energy-dispersive solid state detector and an x-y-z sample stage. Two mapping modes are discussed: reciprocal-space mapping and real-space mapping. Information about the orientations of grains within the irradiated volume is determined by reciprocal-space mapping. The locations of grains having a specified orientation are determined by real-space mapping. Examples are shown for blanket films of AI(4 wt.% Cu) 4μm-thick and 0.5μm thick. Results are also shown for 10μm-wide and μm-wide pure lines. X-ray beams of 10inm diameter were used for these measurements. Spatially resolved thermal strain measurements were made for a single 10μm-wide, 200μm-long passivated Al line, and they were found to be consistent with calculations based on equi-biaxial thermal stress within the line.