Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T23:45:45.221Z Has data issue: false hasContentIssue false

Grain Boundary Sliding in Thin Substrate-Bonded al Films

Published online by Cambridge University Press:  21 February 2011

M. Prieler
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich, Postfach 1913, D-52425 Jülich, Germany
H.G. Bohn
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich, Postfach 1913, D-52425 Jülich, Germany
W. Schilling
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich, Postfach 1913, D-52425 Jülich, Germany
H. Trinkaus
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich, Postfach 1913, D-52425 Jülich, Germany
Get access

Abstract

A systematic investigation of the anelastic relaxation of thin Al films on Si substrates has been carried out. It was found that both the relaxation in bulk and thin film material can be explained by a model involving glide of grain boundaries (GBs). The mass transport necessary for the glide occurs via GB diffusion in the thin films and via lattice diffusion in the bulk material the different behavior being due to the more of two orders of magnitude smaller grains in the films. Internal friction thus provides a technique to measure diffusional parameters of GB diffusion in thin films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. , T.S., Phys. Rev., 71, 533 (1947).CrossRefGoogle Scholar
2. Mehrer, H., Stolica, N., and Stolwijk, N.A., in Landolt-Börnstein, New Series, 111/26, (Springer, Berlin, 1990), p. 60.Google Scholar
3. Kaur, I. and Gust, W., Handbook of Grain and Interface Boundary Diffusion Data, (Ziegler Press, Stuttgart, 1989).Google Scholar
4. Berry, B.S. and Pritchet, W.C., J. de Physique, 42, C51111 (1981).Google Scholar
5. Bohn, H.G., Prieler, M., and Su, C.M., in Mechanical Properties and Deformation Behavior of Materials Having Ultra-fine Microstructures, edited by Nastasi, M.A., Parkin, D.M., and Gleiter, H. (Kluwer Academic Publishers, Dordrecht, 1993), p. 229.CrossRefGoogle Scholar
6. Bohn, H.G. and Su, C.M., Mat. Res. Soc. Symp. Proc., Vol. 239, 215 (1992).CrossRefGoogle Scholar
7. The unpatterned samples were kindly provided by Dr. Kticher, P., Siemens AG, Munich.Google Scholar
8. Vollkommer, F., PhD thesis, RWTH Aachen; Berichte der Kernforschungsanlage Jüllich, Jüllich-2321 (1989).Google Scholar
9. Vollkommer, F., Bohn, H.G., Robrock, K.–H., and Schilling, W., 28th Annual Proceedings Reliability Physics, p. 51 (1990).Google Scholar
10. Landau, L.D. and Lifschitz, E.M., Lehrbuch der theoretischen Physik, Bd. VII (Akademie Verlag, Berlin, 1970).Google Scholar
11. Su, C.M., private communication.Google Scholar
12. Su, C.M., Bohn, H.G., Robrock, K.–H., and Schilling, W., J. Appl. Phys., 70, 2086 (1991).CrossRefGoogle Scholar
13. Nowick, A.S. and Berry, B.S., Anelastic Relaxation in Crystalline Solids (Academic Press, NY, 1972).Google Scholar
14. Su, C.M. and Bohn, H.G., Materials Science Forum, 119–121, 285 (1993).CrossRefGoogle Scholar
15. Raj, R. and Ashby, M.F., Metallurgical Transactions 2, 1113 (1971); Acta met. 23, 653 (1975).CrossRefGoogle Scholar
16. Trinkaus, H. and Yoo, M.H., Phil. Mag. A 57, 543 (1988).CrossRefGoogle Scholar
17. Trinkaus, H., to be published.Google Scholar