Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T13:58:34.875Z Has data issue: false hasContentIssue false

Glass Formation and Nanostructure Development in Al-Based Alloys

Published online by Cambridge University Press:  21 February 2011

R. I. Wu
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin-Madison, WI 53706, USA, wur@cae.wisc.edu
G. Wilde
Affiliation:
Forschungszentrum Karlsruhe INT, 76021 Kalsruhe, Germany
J. H. Perepezko
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin-Madison, WI 53706, USA
Get access

Abstract

Al-Sm and Al-Y-Fe alloys with a high number density of nanocrystalline fcc-Al homogeneously dispersed within the amorphous matrix have been synthesized by devitrifying the precursor metallic glasses produced by rapid solidification. The kinetics of metallic glass formation and the development of the nanostructure during devitrification are discussed in terms of the rate limiting mechanism. The glass transition temperature of the two metallic glasses has been successfully assessed with the application of the modulated-temperature differential scanning calorimetry (DDSC). In addition, the formation of quenched-in nuclei was investigated by a comparison study on the cold-rolled and melt-spun Al92Sm8 amorphous samples. Furthermore, the enhancement of the particle density of the fcc-Al nanocrystals in the amorphous matrix after devitrification has been demonstrated by the incorporation of nanosize Pb particles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Inoue, A., Ohtera, K., Tsai, A., and Masumoto, T., Jpn. J. Appi Phys., 27 (4), p. L479 (1988).Google Scholar
2. He, Y., Dougherty, G. H., Shiflet, G. J., and Poon, S. J., Acta metall., 41 (2), p. 337 (1993).Google Scholar
3. Allen, D. R., Foley, J. C., and Perepezko, J. H., Acta mater., 46 (2), p. 431 (1998).Google Scholar
4. Cantor, B., Mat. Sci. Forum, 307, p. 143 (1999).Google Scholar
5. Sagel, A., Sieber, H., Fecht, H. J., and Perepezko, J. H., Acta mater., 46, 4233 (1998).Google Scholar
6. Wilde, G., Sieber, H., and Perepezko, J. H., J. Non-Cryst. Solids, 252, p. 621 (1999).Google Scholar
7. Johari, G. P., Ram, S., Astl, G., and Mayer, E., J. Non-Cryst. Solids, 116, 2282 (1990).Google Scholar
8. Chen, L. C. and , Spaepen, Mat. Sci. Eng., A133, p. 342 (1991).Google Scholar
9. Battezzati, L., Baricco, M., Schumacher, P., Shih, W. C., and Greer, A. L., Mat. Sci. Eng., A179–190, p. 600 (1994).Google Scholar
10. Chen, H., He, Y., Shiflet, G. J., and Poon, S. J., Scripta Met. 25, p. 1421 (1991).Google Scholar
11. Das, S., Perepezko, J. H., Wu, R. I., and Wilde, G., Mat. Sci. Eng., in press.Google Scholar
12. Wu, R. I., Wilde, G., Perepezko, J. H., in press.Google Scholar
13. Wu, R. I., Perepezko, J. H., in preparation.Google Scholar
14. Schawe, J. E. K., Thermochimica Acta, 260, p. 1 (1995).Google Scholar
15. Wilde, G., Wu, R. I., Perepezko, J. H., in preparation.Google Scholar
16. Li, Q., Johnson, E., Johansen, A., Yu, L., and Sarholt-Kristensen, L., Mat. Sci. Eng., A151, p. 107 (1992).Google Scholar