Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T20:10:27.792Z Has data issue: false hasContentIssue false

Geometries and Electronic Structure of Graphene and Hexagonal BN Superlattices

Published online by Cambridge University Press:  29 February 2012

Yuki Sakai
Affiliation:
Department of Physics, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro-ku, Tokyo 152-8551, Japan
Susumu Saito
Affiliation:
Department of Physics, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro-ku, Tokyo 152-8551, Japan
Get access

Abstract

Relative stabilities and electronic structure of graphene/h-BN superlattices are discussed in the framework of the density functional theory. Most importantly, relative stabilities between commensurate and incommensurate superlattices are studied. Commensurate graphene/h-BN monolayer superlattices are found to be definitely more stable than incommensurate superlattices. In graphene/h-BN bilayer superlattices, commensurate superlattices are found to be slightly more stable than incommensurate superlattices. Results also imply that a finite pressure can induce transition from an incommensurate superlattice to a commensurate superlattice.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See, for example, Neto, A. H. C., Guinea, F., Peres, N. M. R., Novoselov, K. S., and Geim, A. K., Rev. Mod. Phys. 81, 109162 (2009)Google Scholar
2. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., Science 306, 666669 (2004)Google Scholar
3. Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., and Geim, A. K., Proc. Natl. Acad. Sci. USA 102, 1045110453 (2005)Google Scholar
4. Dean, C. R., Young, A. F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K. L., and Hone, J., Nature Nanotech. 5, 722726 (2010)Google Scholar
5. Gannett, W., Regan, W., Watanabe, K., Taniguchi, T., Crommie, M. F., and Zettl, A., Appl. Phys. Lett. 98, 242105 (2011)Google Scholar
6. Liu, Z., Song, L., Zhao, S., Huang, J., Ma, L., Zhang, J., Lou, J., and Ajayan, P. M., Nano Lett. 11, 20322037 (2011)Google Scholar
7. Sakai, Y., Koretsune, T., and Saito, S., Phys. Rev. B 83, 205434 (2011)Google Scholar
8. Sachs, B., Wehling, T. O., Katsnelson, M. I., and Lichtenstein, A. I., Phys. Rev. B 84, 195414 (2011)Google Scholar
9. Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864871 (1964)Google Scholar
10. Kohn, W. and Sham, L. J., Phys. Rev. 140, A11331138 (1965)Google Scholar
11. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Corso, A. D., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gertsmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P., and Wentzcovitch, R. M., J. Phys. Condens. Matter. 21, 395502 (2009)Google Scholar
12. Ceperley, D. M. and Alder, B. J., Phys. Rev. Lett. 45, 566569 (1980)Google Scholar
13. Perdew, J. P. and Zunger, A., Phys. Rev. B 23, 50485079 (1981)Google Scholar
14. Troullier, N. and Martins, J. L., Phys. Rev. B 43, 19932006 (1991)Google Scholar
15. Ginovannetti, G., Khomyakov, P. A., Brocks, G., Kelly, P. J., and van der Brink, J., Phys. Rev. B 76, 073103 (2007)Google Scholar
16. Murnaghan, F. D., Proc. Natl. Acad. Sci. USA, 30 244247 (1944)Google Scholar