No CrossRef data available.
Published online by Cambridge University Press: 11 February 2011
Nanocomposites consisting of GaSb nanocrystals in a conducting polymer matrix were fabricated and investigated. The current-voltage characteristics of the nanocomposite-based diode structures have a symmetric but strongly nonlinear character. Capacitance-voltage characteristics of the structures were investigated both in the dark and under illumination and compared with those of a pure polymer. At applied voltages exceeding 7–10 V (for different samples) electroluminescence begins and steeply increases. The position of the maximum of the measured electroluminescence spectra can be made to vary in the 1.3 – 1.6 μm wavelengths region by changing nanocrystal size. Photoluminescence spectra have a maximum nearly coinciding with that of electroluminescence but of considerably larger width. The results demonstrate the promise of GaSb-based nanocomposites for infrared light-emitting devices operating in the 1.3–1.6 μm spectral region used in optical communication systems.