Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T01:14:09.471Z Has data issue: false hasContentIssue false

Functionalized Rosette Nanotubes as Novel Electron Donor Materials for Solution-Processed Organic Photovoltaics

Published online by Cambridge University Press:  11 February 2015

Liang Shuai
Affiliation:
Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada
Venkatakrishnan Parthasarathy
Affiliation:
Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada
Jae-Young Cho
Affiliation:
National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada
Takeshi Yamazaki
Affiliation:
Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada
Rachel L. Beingessner
Affiliation:
National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada
Hicham Fenniri*
Affiliation:
Department of Chemical Engineering, 313 Snell Engineering Center, Northeastern University, 360 Huntington Avenue, Boston, MA 02115-5000
Get access

Abstract

Two self-assembling twin guanine-cytosine (G∧C) hybrid molecules featuring porphyrin (TPPO-(G∧C)2) and oligothiophene groups (6T-(G∧C)2) were synthesized. In organic solution, these molecules self-assemble into one-dimensional rosette nanotubes (RNTs) featuring the porphyrin or oligiothiophene groups on the outer surface. Using a combination of imaging and spectroscopic techniques we established the structure of the TPPO-(G∧C)2 and 6T-(G∧C)2 RNTs and compared the HOMO and LUMO energy levels with PC61BM, a well-known electron acceptor material. These studies, in combination with solid-state photoluminescence data of PC61BM-TPPO-(G∧C)2 RNT blended thin films, indicates that these self-assembled nanomaterials have great potential as electron donor materials for solution-processed organic photovoltaics.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kippelen, B. and Brédas, J.-L., Energy Environ. Sci. 2, 251 (2009).CrossRefGoogle Scholar
Arias, A. C., MacKenzie, J. D., McCulloch, I., Rivnay, J., and Salleo, A., Chem. Rev. 110, 3 (2010).CrossRefGoogle Scholar
(a) Dang, M. T., Hirsch, L., Wantz, G. and Wuest, J. D., Chem. Rev. 113, 3734 (2013). (b) D. Chen, A. Nakahara, D. Wei, D. Nordlund and T. P. Russell, Nano Lett. 11, 561 (2011). (c) P. Vanlaeke, A. Swinnen, I. Haeldermans, G. Vanhoyland, T. Aernouts, D. Cheyns, C. Deibel, J. D’Haen, P. Heremans, J. Poortmans and J. V. Manca, Sol. Energy Mater. Sol. Cells 90, 2150 (2006).CrossRefGoogle Scholar
(a) Würthner, F., Nat. Chem. 6, 171 (2014). (b) F. J. M. Hoeben, P. Jonkheijm, E. W. Meijer and A. P. H. J. Schenning, Chem. Rev. 105, 1491 (2005).CrossRefGoogle Scholar
Elemans, J. A. A. W., van Hameren, R., Nolte, R. J. M. and Rowan, A. E., Adv. Mater. 18, 1251 (2006).CrossRefGoogle Scholar
(a) Hasobe, T., Saito, K., Kamat, P. V., Troiani, V., Qiu, H., Solladié, N., Kim, K. S., Park, J. K., Kim, D., D’Souza, F. and Fukuzumi, S., J. Mater. Chem. 17, 4160 (2007). (b) R. J. Kumar, J. M. MacDonald, T. B. Singh, L. J. Waddington and A. B. Holmes, J. Am. Chem. Soc. 133, 8564 (2011). (c) L. Schmidt-Mende, A. Fechtenkötter, K. Müllen, E. Moons, R. H. Friend and J. D. MacKenzie, Science 293, 1119 (2001).CrossRefGoogle Scholar
(a) Fenniri, H., Mathivanan, P., Vidale, K. L., Sherman, D. M., Hallenga, K., Wood, K. V. and Stowell, J. G., J. Am. Chem. Soc. 12, 3854 (2001). (b) H. Fenniri, B.-L. Deng and A. E. Ribbe J. Am. Chem. Soc. 124, 11064 (2002).CrossRefGoogle Scholar
(a) Moralez, J., Raez, J., Yamazaki, T., Motkuri, R., Kovalenko, A. and Fenniri, H. J. Am. Chem. Soc. 127, 8307 (2005). (b) U. D. Hemraz, M. EI-Bakkari, T. Yamazaki, J.-Y. Cho, R. L. Beingessner and H. Fenniri, Nanoscale 6, 9421 (2014).CrossRefGoogle Scholar
(a) Tikhomirov, G., Oderinde, M., Makeiff, D., Mansouri, A., Lu, W., Heirtzler, F., Kwok, D. Y. and Fenniri, H., J. Org. Chem., 73, 4248 (2008).(b) R. L. Beingessner, B.-L. Deng, P. E. Fanwick and H. Fenniri, J. Org. Chem., 73, 931 (2008). (c) R. L. Beingessner, J. A. Diaz, U. D. Hemraz and H. Fenniri, Tet. Lett., 52, 661 (2011).CrossRefGoogle Scholar
(a) Chhabra, R., Moralez, J. G., Raez, J., Yamazaki, T., Cho, J.-Y., Myles, A. J., Kovalenko, A. and Fenniri, H. J. Am. Chem. Soc. 132, 32 (2010).CrossRefGoogle Scholar
(a) Suri, S. S., Rakotondradany, F., Myles, A. J., Fenniri, H. and Singh, B., Biomaterials 30, 3084 (2009). (b) W. S. Journeay, S. S. Suri, J. G. Moralez, H. Fenniri and B. Singh, Small, 5, 1446 (2009).CrossRefGoogle Scholar
Okada, S. and Segawa, H., J. Am. Chem. Soc. 125, 2792 (2003).CrossRefGoogle Scholar
Stone, D. A., Tayi, A. S., Goldberger, J. E., Palmer, L. C. and Stupp, S. I., Chem. Commun. 47, 5702 (2011).CrossRefGoogle Scholar
D’Andrade, B. W., Datta, S., Forrest, S. R., Djurovich, P., Polikarpov, E. and Thompson, M. E., Org. Electron. 6, 11 (2005).CrossRefGoogle Scholar
Walter, M. G., Rudine, A. B. and Wamser, C. C., J. Porphyrins Phthalocyanines 14, 759 (2010).CrossRefGoogle Scholar