Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T21:41:39.645Z Has data issue: false hasContentIssue false

Functional oxide films with engineered ferroelectric properties

Published online by Cambridge University Press:  21 May 2013

R. Wördenweber
Affiliation:
Peter Grünberg Institute (PGI) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, D-52425 Jülich, Germany
T. Ehlig
Affiliation:
Peter Grünberg Institute (PGI) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, D-52425 Jülich, Germany
J. Schubert
Affiliation:
Peter Grünberg Institute (PGI) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, D-52425 Jülich, Germany
R. Kutzner
Affiliation:
Peter Grünberg Institute (PGI) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, D-52425 Jülich, Germany
E. Hollmann
Affiliation:
Peter Grünberg Institute (PGI) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, D-52425 Jülich, Germany
Get access

Abstract

The ferroelectric properties of anisotropically strained SrTiO3 films are analyzed by detailed measurements of the complex dielectric constant as function of temperature, frequency, bias voltage and electric field direction. The strain induces a relaxor-ferroelectric phase that persists up to room temperature. However, transition temperature and ferroelectric properties strongly depend on the orientation of the electric field and therefore on the amount of structural strain in the given electric field direction. Frequency and time dependent relaxation experiments reveal the presence and properties of polar nanoregions with randomly distributed directions of dipole moments in the film.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lüders, U. et al. ., Phys. Rev. B 71, 134419 (2005); F. Rigato et al., Mater. Sci. Eng. B 144, 43(2007)] CrossRefGoogle Scholar
Haeni, J. H. et al. ., Nature 430, 758 (2004); R. Wördenweber et al., J. Appl. Phys. 102, 044119(2007) CrossRefGoogle Scholar
Zaitsev, A. G. et al. ., Inst. Phys. Conf. Ser.158, 25 (1997); E. Hollmann et al., J. Appl. Phys. 105, 114104(2009); M. D. Biegalski et al., J. Appl. Phys. 104, 114109 (2008) Google Scholar
Fritsch, D. and Ederer, C., Appl. Phys. Lett. 99, 081916 (2011)CrossRefGoogle Scholar
Jang, H.W. et al. ., Phys. Rev. Lett. 104, 197601 (2010)CrossRefGoogle Scholar
Wördenweber, R. et al. ., Ferroelectrics 430, 5764 (2012)CrossRefGoogle Scholar
Schwarzkopf, J. et al. ., J. Appl. Crystallography 45, 10151023 (2012)CrossRefGoogle Scholar
Müller, K. A. and Burkard, H., Phys. Rev. B 19, 3593 (1979); W. Zhong and D. Vanderbilt, Phys. Rev. B 53, 5047(1996); J. Hemberger et al., Phys. Rev. B 52, 13159 (1995) CrossRefGoogle Scholar
Uwe, H. and Sakudo, T., Phys. Rev. B 13, 271 (1976).CrossRefGoogle Scholar
Pertsev, N. A. et al. ., Phys. Rev. B 61, R825 (2000) and 65, 219901(E) (2002)CrossRefGoogle Scholar
Bokov, A. A. and Ye, Z.-G., Solid State Commun. 116, 105 (2000).CrossRefGoogle Scholar
Scott, J. F. et al. ., Phys. Rev. Lett. 109, 187601 (2012)CrossRefGoogle Scholar
Laguta, V.V. et al. ., Phys. Rev. B 72, 214117 (2005)CrossRefGoogle Scholar
Zubko, P. et al. ., Phys. Rev. Lett. 99, 167601 (2007)CrossRefGoogle Scholar
Bokov, A. A. et al. ., Phys. Rev. B 68, 052102 (2003)CrossRefGoogle Scholar
Viehland, D. et al. ., J. Appl. Phys. 68, 2916 (1990)CrossRefGoogle Scholar
Bokov, A. A., Ye, Z.-G., J. Mat. Science 41 (2006) 3152 CrossRefGoogle Scholar
Vogel, H., Phys. Z. 22, 645 (1921); G. S. Fulcher, J. Am. Ceram. Soc. 8, 339(1925) Google Scholar