Published online by Cambridge University Press: 23 March 2011
We present a fully automated microwave-based synthesis setup for colloidal nanoparticles. Integrated absorption and photoluminescence online analytics opens the possibility to monitor the growth of various nanoparticles at any stage of the reaction. Spectroscopic investigation within the first seconds of a reaction is accessible opening the possibility to detect potential critical size nuclei as a function of the reaction conditions. Beside the possibility to perform systematic mechanistic studies, this system allows a high degree of synthesis control leading to very good product reproducibility. In conjunction with an automated auto sampler unit systematic multiple reactions can be performed one after each other and compared. The setup is remote-controllable allowing worldwide online control accessibility over the synthesis setup including data processing, visualization and storage. The performance of the setup will be demonstrated by using the synthesis of CdSe nanocrystals as a model system and can be extended to the synthesis of various metallic and semiconducting nanoparticles.